Accumulation of cholesterol and other atherogenic lipids such as low-density lipoprotein (LDL) in artery wall causes reduction of vessel diameter and artery stenosis. The study of the mass transfer of these large molecules in the wall with considering effective factors on lumen flow and different physiological factors is the subject considered nowadays. In this paper, results of two dimensional and axi-symmetric simulations of three different models of the artery with 60% stenosis under pulsatile blood flow are presented. Filtration velocity of LDL mass transport in the permeable artery wall and shear stress of blood flow are investigated using ADINA software Three different flow models are considered. In the first and second models, the filtration velocity considered as a given parameter and constant in arterial wall boundary, while in third model arterial wall considered as porous wall, the filtration velocity is calculated from pressure difference as an input parameter of the model. The results show that filtration velocity is strongly depend on geometry and it is not constant along the wall, contrary to simplified models. The results of concentration variations in lumen and wall illustrate the increase in near wall LDL concentration or concentration polarization.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-171715DOI Listing

Publication Analysis

Top Keywords

filtration velocity
20
wall
9
low-density lipoprotein
8
mass transport
8
artery wall
8
blood flow
8
arterial wall
8
filtration
5
velocity
5
numerical simulation
4

Similar Publications

Designing Microfluidic-Chip Filtration with Multiple Channel Networks for the Highly Efficient Sorting of Cell Particles.

Micromachines (Basel)

December 2024

Complex Fluids Laboratory, Advanced Materials and Systems Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

Microfluidic-chip based hydrodynamic filtration is one of the passive sorting techniques that can separate cell or particle suspensions into subpopulations of different sizes. As the branch channels and side channels play an important role in maintaining particle focusing, their rational design is necessary for highly efficient sorting. A model framework involving multiple side and multiple branch channels has been developed by extending the analytical analysis of three-dimensional laminar flow in channel networks, which was previously validated by comparison with numerical simulations.

View Article and Find Full Text PDF

Advanced micropollutant and phosphorus removal with superfine powdered activated carbon and pile cloth media filtration.

Water Res

December 2024

Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Germany. Electronic address:

Organic micropollutants (OMP) are ubiquitous in aquatic ecosystems and have a proven negative impact on the environment and drinking water resources. To remove OMP from municipal wastewater, the use of superfine Powdered Activated Carbon (sPAC) (d = 1.0 µm) compared to Powdered Activated Carbon (PAC) (d = 30.

View Article and Find Full Text PDF

Design and Evaluation of 3D-Printed Lattice Structures as High Flow Rate Aerosol Filters.

ACS Appl Eng Mater

December 2024

Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.

Article Synopsis
  • Aerosol contamination is a significant issue across various sectors, and the study focuses on using 3D-printed open foam-like lattice structures as an efficient solution for filtration.
  • The researchers created and tested four different lattice geometries (Cubic, Kelvin, Octahedron, and Weaire-Phelan) to determine their effectiveness in capturing aerosol particles, finding that filtration performance improves with the specific surface area of the filter design.
  • The study also identified mechanisms of particle deposition and established that 3D-printed lattices can achieve high filtration efficiencies (10-100%) under varying airflow conditions, indicating their potential as customizable and effective aerosol filters while addressing existing production challenges.
View Article and Find Full Text PDF

Background: To date, no specific treatment has been established to reverse progressive chronic kidney disease (CKD).

Aim: To evaluate the safety and efficacy of autologous CD34 cell transplantation in CKD patients who exhibited a progressive decline in renal function.

Methods: The estimated glomerular filtration rate (eGFR) at the beginning of the study was 15.

View Article and Find Full Text PDF

Rationale And Objectives: Increased aortic or central arterial stiffness (CAS) is a major factor in cardiovascular morbidity and mortality in patients with vascular risk factors. Decreased glomerular filtration rate (GFR) and increased urinary albumin excretion (uALB) are associated with lethal and non-lethal cardiovas-cular events. The pathophysiological mechanisms of this association are not fully defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!