Accumulation of cholesterol and other atherogenic lipids such as low-density lipoprotein (LDL) in artery wall causes reduction of vessel diameter and artery stenosis. The study of the mass transfer of these large molecules in the wall with considering effective factors on lumen flow and different physiological factors is the subject considered nowadays. In this paper, results of two dimensional and axi-symmetric simulations of three different models of the artery with 60% stenosis under pulsatile blood flow are presented. Filtration velocity of LDL mass transport in the permeable artery wall and shear stress of blood flow are investigated using ADINA software Three different flow models are considered. In the first and second models, the filtration velocity considered as a given parameter and constant in arterial wall boundary, while in third model arterial wall considered as porous wall, the filtration velocity is calculated from pressure difference as an input parameter of the model. The results show that filtration velocity is strongly depend on geometry and it is not constant along the wall, contrary to simplified models. The results of concentration variations in lumen and wall illustrate the increase in near wall LDL concentration or concentration polarization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/BME-171715 | DOI Listing |
Micromachines (Basel)
December 2024
Complex Fluids Laboratory, Advanced Materials and Systems Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Microfluidic-chip based hydrodynamic filtration is one of the passive sorting techniques that can separate cell or particle suspensions into subpopulations of different sizes. As the branch channels and side channels play an important role in maintaining particle focusing, their rational design is necessary for highly efficient sorting. A model framework involving multiple side and multiple branch channels has been developed by extending the analytical analysis of three-dimensional laminar flow in channel networks, which was previously validated by comparison with numerical simulations.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Germany. Electronic address:
Organic micropollutants (OMP) are ubiquitous in aquatic ecosystems and have a proven negative impact on the environment and drinking water resources. To remove OMP from municipal wastewater, the use of superfine Powdered Activated Carbon (sPAC) (d = 1.0 µm) compared to Powdered Activated Carbon (PAC) (d = 30.
View Article and Find Full Text PDFACS Appl Eng Mater
December 2024
Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
World J Stem Cells
December 2024
Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Kanagawa, Japan.
Background: To date, no specific treatment has been established to reverse progressive chronic kidney disease (CKD).
Aim: To evaluate the safety and efficacy of autologous CD34 cell transplantation in CKD patients who exhibited a progressive decline in renal function.
Methods: The estimated glomerular filtration rate (eGFR) at the beginning of the study was 15.
Nefrologia (Engl Ed)
December 2024
Unidad de Factores de Riesgo Vascular, Hospital Universitario, Jerez de la Frontera, Cádiz, Spain. Electronic address:
Rationale And Objectives: Increased aortic or central arterial stiffness (CAS) is a major factor in cardiovascular morbidity and mortality in patients with vascular risk factors. Decreased glomerular filtration rate (GFR) and increased urinary albumin excretion (uALB) are associated with lethal and non-lethal cardiovas-cular events. The pathophysiological mechanisms of this association are not fully defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!