Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells.

Carbohydr Polym

Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada; Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke, 12e Avenue N, Sherbrooke, Québec, J1H 5N4, Canada; Pharmacology Institute of Sherbrooke, 12e Avenue N, Sherbrooke, Québec, J1H 5N4, Canada. Electronic address:

Published: February 2018

The incidence of brain degenerative disease such as Alzheimer's disease (AD) will increase as the world population is ageing. While current AD treatments have only a transient effect, there are many evidences indicating that some growth factors, such as BMP-9, may be used to treat AD. However, growth factors cannot readily access the brain because of their size and the presence of the blood brain barrier. We have therefore developed a small peptide derived from BMP-9, SpBMP-9, which can promote the differentiation of cholinergic neurons and inactivate GSK3beta, a Tau kinase. Here, we investigated the potential of a nanoparticle-based delivery system of SpBMP-9, made of alginate and chitosan (Alg/Chit NPs), as a new therapeutic strategy against AD. The Alg/Chit NPs size distribution revealed NPs with an average diameter of ∼240nm. The encapsulation efficiency of SpBMP-9 was ∼70% of the initial peptide mass loading. Release kinetics of SpBMP-9 were performed in physiological conditions and modelled with a mechanistic framework that took into account the size distribution of Alg/Chit NPs. The release of SpBMP-9 revealed to be mostly diffusive, but there were interactions between the peptide and the alginate chains. The Alg/Chit NPs could also increase the viability of SH-SY5Y cells in comparison to the control. Finally, the SpBMP-9 released from Alg/Chit NPs promoted the SH-SY5Y differentiation into mature neurons as demonstrated by a higher neurite outgrowth and an increased expression of the neuronal markers NSE and VAchT. In conclusion, the nano-scale SpBMP-9 delivery system made of Alg/Chit may be a promising therapeutic strategy against AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.11.075DOI Listing

Publication Analysis

Top Keywords

alg/chit nps
20
spbmp-9
8
sh-sy5y cells
8
growth factors
8
delivery system
8
therapeutic strategy
8
size distribution
8
alg/chit
6
nps
6
characterization alginate/chitosan-based
4

Similar Publications

This study reports on the synthesis of MnZnFeO (Mn, Zn ferrite) magnetic nanoparticles (MNPs) as drug delivery carriers for effective therapeutic outcomes. The MNPs were prepared using the coprecipitation method, and their magnetic properties were investigated based on their composition. Among the compositions tested, MnZnFeO MNPs exhibited superparamagnetic properties with a saturation magnetization moment of 34.

View Article and Find Full Text PDF

Characterization and Mathematical Modeling of Alginate/Chitosan-Based Nanoparticles Releasing the Chemokine CXCL12 to Attract Glioblastoma Cells.

Pharmaceutics

April 2020

Advanced dynamic cell culture systems laboratory, Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada.

Chitosan (Chit) currently used to prepare nanoparticles (NPs) for brain application can be complexed with negatively charged polymers such as alginate (Alg) to better entrap positively charged molecules such as CXCL12. A sustained CXCL12 gradient created by a delivery system can be used, as a therapeutic approach, to control the migration of cancerous cells infiltrated in peri-tumoral tissues similar to those of glioblastoma multiforme (GBM). For this purpose, we prepared Alg/Chit NPs entrapping CXCL12 and characterized them.

View Article and Find Full Text PDF

Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells.

Carbohydr Polym

February 2018

Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, J1K 2R1, Canada; Clinical Research Center of Centre Hospitalier Universitaire de Sherbrooke, 12e Avenue N, Sherbrooke, Québec, J1H 5N4, Canada; Pharmacology Institute of Sherbrooke, 12e Avenue N, Sherbrooke, Québec, J1H 5N4, Canada. Electronic address:

The incidence of brain degenerative disease such as Alzheimer's disease (AD) will increase as the world population is ageing. While current AD treatments have only a transient effect, there are many evidences indicating that some growth factors, such as BMP-9, may be used to treat AD. However, growth factors cannot readily access the brain because of their size and the presence of the blood brain barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!