Macromolecular structure and film properties of enzymatically-engineered high molar mass dextrans.

Carbohydr Polym

UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France; UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université Avignon, F-84000 Avignon, France. Electronic address:

Published: February 2018

New α(1→2) or α(1→3) branched dextrans with high molar masses and controlled architecture were synthesized using a dextransucrase and branching sucrases. Their molecular structure, solubility, conformation, film-forming ability, as well as their thermal and mechanical properties were determined. These new dextrans present structures with low densities from 9,500 to 14,000gm in HO/DMSO medium, their molar mass, size and dispersity increase with increasing branching degree (weight-average molar mass up to 10gmol and radius of gyration around 500nm). Dextrans exhibit a glass transition between 40.5 and 63.2°C for water content varying from 12.2 to 14.1%. The effect of branching is mainly observed on the ability of dextran to crystallize. They have a good film-forming ability with a storage modulus which varies from 2 to 4GPa within a relative humidity range of 10-50%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.10.065DOI Listing

Publication Analysis

Top Keywords

molar mass
12
high molar
8
film-forming ability
8
macromolecular structure
4
structure film
4
film properties
4
properties enzymatically-engineered
4
enzymatically-engineered high
4
molar
4
dextrans
4

Similar Publications

The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the recycling process NGR LSP (EU register number RECYC328). The input is hot washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step under high temperature and vacuum (step 4).

View Article and Find Full Text PDF

In this study, a commercially available polypropylene homopolymer (H-PP) was blended with blow molding polyethylene (PE) grade via melt mixing using a compounding machine. The resulting blends were subjected to high-temperature size exclusion chromatography (SEC) analysis, coupled with infrared-5 (IR-5), viscometer (VISCO), and multi-angle laser light scattering (MALS) detectors. The molecular weight (MW) and MW distributions were investigated using SEC, and the exact blend compositions were evaluated using C nuclear magnetic resonance.

View Article and Find Full Text PDF

Relationship Between Physical Characteristics of Cereal Polysaccharides and Soft Tribology-The Importance of Grain Source and Malting Modification.

Food Sci Nutr

January 2025

Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology Freising Germany.

Starch and non-starch polysaccharides ((N)SPs) are relevant in cereal-based beverages. Although their molar mass and conformation are important to the sensory characteristics of beer and non-alcoholic beer, their triggering mechanism in the mouth is not fully understood. Soft tribology has emerged as a tool to mimic oral processing (drinking).

View Article and Find Full Text PDF

Aim: This study aimed to explore the possible bidirectional interrelations between fructose-induced metabolic syndrome (MS) and apical periodontitis (AP).

Methodology: Twenty-eight male Wistar rats were distributed into four groups (n = 7, per group): Control (C), AP, Fructose Consumption (FRUT) and Fructose Consumption and AP (FRUT+AP). The rats in groups C and AP received filtered water, while those in groups FRUT and FRUT+AP received a 20% fructose solution mixed with water to induce MS.

View Article and Find Full Text PDF

Nitric oxide-sensitive guanylyl cyclase (NO-GC) is a heterodimeric enzyme with an α- and a β-subunit. In its active form as an αβ-heterodimer, NO-GC produces cyclic guanosine-3',5'-monophophate (cGMP) to regulate vasodilation and proliferation of vascular smooth muscle cells (VSMCs). In contrast to VSMCs, only a few studies reported on the expression of the NO-GC αβ-heterodimer in human pericytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!