Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy.

J Photochem Photobiol B

Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara. Rodovia Araraquara-Jaú, Km1, Campus Ville, Araraquara, SP, CEP 14800-903, Brazil. Electronic address:

Published: January 2018

Bacterial resistance to available antibiotics nowadays is a global threat leading researchers around the world to study new treatment modalities for infections. Antimicrobial photodynamic therapy (aPDT) has been considered an effective and promising therapeutic alternative in this scenario. Briefly, this therapy is based on the activation of a non-toxic photosensitizing agent, known as photosensitizer (PS), by light at a specific wavelength generating cytotoxic singlet oxygen and free radicals. Virtually all studies related to aPDT involve a huge screening to identify ideal PS concentration and light dose combinations, a laborious and time-consuming process that is hardly disclosed in the literature. Herein, we describe an antimicrobial Photodynamic Therapy (aPDT) study against Enterococcus faecalis and Propionibacterium acnes employing methylene blue, chlorin-e6 or curcumin as PS. Similarities and discrepancies between the two bacterial species were pointed out in an attempt to speed up and facilitate futures studies against those clinical relevant strains. Susceptibility tests were performed by the broth microdilution method. Our results demonstrate that aPDT mediated by the three above-mentioned PS was effective in eliminating both gram-positive bacteria, although P. acnes showed remarkably higher susceptibility to aPDT when compared to E. faecalis. PS uptake assays revealed that P. acnes is 80 times more efficient than E. faecalis in internalizing all three PS molecules. Our results evidence that the cell wall structure is not a limiting feature when predicting bacterial susceptibility to aPDT treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2017.11.035DOI Listing

Publication Analysis

Top Keywords

antimicrobial photodynamic
12
photodynamic therapy
12
enterococcus faecalis
8
faecalis propionibacterium
8
propionibacterium acnes
8
therapy apdt
8
susceptibility apdt
8
apdt
6
susceptibility
4
susceptibility enterococcus
4

Similar Publications

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

() is a Gram-negative, spiral-shaped bacterium that colonizes the gastric epithelium and is associated with a range of gastrointestinal disorders, exhibiting a global prevalence of approximately 50%. Despite the availability of treatment options, frequently reemerges and demonstrates increasing antibiotic resistance, which diminishes the efficacy of conventional therapies. Consequently, it is imperative to explore non-antibiotic treatment alternatives to mitigate the inappropriate use of antibiotics.

View Article and Find Full Text PDF

Klebsiella pneumoniae is a leading cause of anti-microbial resistance in healthcare-associated infections that have posed a severe threat to neonatal and wider community. The escalating crises of antibiotic resistance have compelled researchers to explore an innovative arsenal beginning from natural resources to chemical modifications in order to overcome the ever-increasing resistance issues. The present review highlights the drug discovery efforts with a special focus on cutting-edge strategies in the hunt for potential drug candidates against MDR/XDR Klebsiella pneumoniae.

View Article and Find Full Text PDF

The Bacterial Biofilms: Formation, Impacts, and Possible Management Targets in the Healthcare System.

Can J Infect Dis Med Microbiol

December 2024

Department of Applied Health Sciences, School of Health Sciences, Kisii University, Kisii, Kenya.

The persistent increase in multidrug-resistant pathogens has catalyzed the creation of novel strategies to address antivirulence and anti-infective elements. Such methodologies aim to diminish the selective pressure exerted on bacterial populations, decreasing the likelihood of resistance emergence. This review explores the role of biofilm formation as a significant virulence factor and its impact on the development of antimicrobial resistance (AMR).

View Article and Find Full Text PDF

AIEgen-biomacromolecule conjugates: Visualized delivery and light-controlled theranostic platforms.

J Control Release

December 2024

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore. Electronic address:

Biomacromolecules play a critical role in advancing disease diagnosis and treatment. Traditional carriers often lack real-time tracking capabilities, controlled drug release, and may induce adverse effects for delivering biomacromolecules. Aggregation-induced emission luminogens (AIEgens) provide significant advantages in biomacromolecule delivery, enabling real-time fluorescence imaging and reactive oxygen species generation for photodynamic therapy (PDT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!