Sludge treatment and disposal have become important environmental issues in China. Mechanical dewatering is widely used to reduce the amount of sludge to be disposed and relieve the rapid growth pressure of waste sludge. In comparison to traditional sludge dewatering processes, pressure electro-osmotic dewatering has many advantages on sludge dewatering efficiency, low conditioner dosage and concentrated cake are both beneficial to further recycling of waste sludge. In general, complex electrochemical effects (eg. electrochemical oxidation, ohmic heating and pH gradient effect) are accompanied by the pressure electro-osmotic dewatering process. These electrochemical effects will inevitably cause solubilization and/or degradation of key constituents of wastewater sludge - extracellular polymeric substances (EPS). In this study, the effects of voltage, pH and ionic strength on sludge electro-osmotic dewatering performance and electrochemical effects were investigated. The solubilization and degradation of EPS were analyzed by examining the variation of dissolved organic matter (DOM) in the filtrate, and the relationships between microstructural properties of sludge cake and DOM and electro-osmosis dewatering performance in electro-dewatering process was examined. It was found that electro-dewatering properties were improved by raising the operating voltage or decreasing the pH value, while dewatering rate initially increased at low ionic strength it decreases with increased ionic strength. In addition, the porous structure of cathodic cake was more plentiful than that at the anode. At the cathode, the EPS dissolution was mainly related to alkalization, while the oxidation and acidification were responsible for release of EPS at the anode. Meanwhile, electrophoresis effect was able to promote migration of EPS toward the anode. The average electro-osmotic dewatering rate at the anode (R.>0.79, p < 0.02) and at the cathode (R.>0.87, p < 0.03) strongly correlated with the volume of pore of sludge cake. There was no correlation between the total content of anodic DOM (R<0.31, p>0.08) and electro-osmotic dewatering rate at the anode, however, the content of cathodic DOM (R > 0.62, p < 0.09) negatively correlated with average electro-osmosis dewatering rate of cathode. Since cathode is the main water-permeable side in sludge electro-dewatering, and the sticky biopolymers (proteins and humic subtances) could not be converted into small molecules, higher EPS release was associated with worse sludge filterability. As for the anode, the biopolymers were degraded into small molecules due to electrochemical oxidation, which greatly reduced the impact of DOM on dewatering effect. Therefore, the operating conditions (voltage, pH and ionic strength) caused changes in electrochemical effects, which played a crucial role in compartmentalization of sludge EPS dissolution and consequently sludge electro-dewatering behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2017.11.060 | DOI Listing |
Chemosphere
September 2024
Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
Chemosphere
August 2024
Institute of Geotechnical Engineering, College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310014, China. Electronic address:
Environ Technol
September 2024
College of Environmental Sciences and Engineering, Peking University, Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing, People's Republic of China.
Sewage sludge requires effective dewatering and high nutrients retention before disposal for agricultural application. Pressurized electro-osmotic dewatering (PEOD) process with low energy consumption can effectively remove water from sludge, but the influences of PEOD process on nutrients for agricultural application still lacks in-depth research. In this study, the influences of PEOD process on nutrients for agricultural application were investigated, including organic matter, nitrogen, phosphorus, potassium and silicon contents.
View Article and Find Full Text PDFSci Total Environ
April 2022
Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
Pressurized vertical electro-osmotic dewatering (PVEOD) has been regarded as a feasible method to achieve sludge deep-dewatering, but the dewatering efficiency is still challenged by high electric resistance. This study employed cationic polyacrylamide (CPAM) as a skeleton builder to enhance electro-osmotic flow in PVEOD. The sludge dewatering efficiency and synergistic effect of CPAM and PVEOD were elucidated.
View Article and Find Full Text PDFWater Res
August 2021
College of Science, Beijing Forestry University, Beijing 100083, China.
In this study, the siderite/PMS conditioning-pressurized vertical electro-osmotic dewatering (PEOD) process was used to reduce the volume of activated sludge (AS). The changes in water content, cell, extracellular polymeric substances (EPS) distribution, protein secondary structures and typical amino acids in EPS fractions of AS along siderite/PMS conditioning-PEOD process were investigated. Results showed that the final water content (WC) of dewatered AS was 58.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!