Upf1 is an SF1-family RNA helicase that is essential for the nonsense-mediated decay (NMD) process in eukaryotes. While Upf1 has been shown to interact with 80S ribosomes, the molecular details of this interaction were unknown. Using purified recombinant proteins and high-throughput sequencing combined with Fe-BABE directed hydroxyl radical probing (HTS-BABE) we have characterized the interaction between Upf1 and the yeast 80S ribosome. We identify the 1C domain of Upf1, an alpha-helical insertion in the RecA helicase core, to be essential for ribosome binding, and determine that the L1 stalk of 25S rRNA is the binding site for Upf1 on the ribosome. Using the cleavage sites identified by hydroxyl radical probing and high-resolution structures of both yeast Upf1 and the human 80S ribosome, we provide a model of a Upf1:80S structure. Our model requires that the L1 stalk adopt an open configuration as adopted by an un-rotated, or classical-state, ribosome. Our results shed light on the interaction between Upf1 and the ribosome, and suggest that Upf1 may specifically engage a classical-state ribosome during translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829565 | PMC |
http://dx.doi.org/10.1093/nar/gkx1263 | DOI Listing |
Environ Sci Technol Lett
January 2025
PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland.
Oxidative potential (OP) is increasingly recognized as a more health-relevant metric than particulate matter (PM) mass concentration because of its response to varying chemical compositions. Given the limited research on the OP of complex combustion aerosols, the effects of aging processes on their OP remain underexplored. We used online instruments to track the evolution of OP [via dithiothreitol (DTT) assays] during the aging of wood burning and coal combustion emissions by hydroxyl-radical-driven photooxidation and dark ozonolysis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Experimental Research and Guangxi Cancer Molecular Medicine Engineering Research Center and Guangxi Key Laboratory of Basic and Translational Research for Colorectal Cancer, Guangxi Medical University Cancer Hospital, Nanning, China.
An emerging strategy in cancer therapy involves inducing reactive oxygen species (ROS), specifically within tumors using nanozymes. However, existing nanozymes suffer from limitations such as low reactivity, poor biocompatibility, and limited targeting capabilities, hindering their therapeutic efficacy. In response, the PdRu@PEI bimetallic nanoalloys were constructed with well-catalytic activities and effective separation of charges, which can catalyze hydrogen peroxide (HO) to toxic hydroxyl radical (·OH) under near-infrared laser stimulation.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Medicine, Linyi University, Linyi 276005, China.
The multiple enzymatic properties of the Au-modified metal-organic framework (Au-MOFs) have made it a functional catalytic system for antitumor treatment. However, in the face of insufficient catalytic substrates in tumor tissue, it is still impossible to achieve efficient treatment of tumors. Herein, Au-MOFs loaded with hyaluronic acid (HA)-modified calcium peroxide nanoparticles (CaO NPs) were used to construct a nanozyme (Au-MOF/CaO/HA) for substrate self-supplied and parallel catalytic/calcium-overload-mediated therapy of cancer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of System Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea. Electronic address:
Highly succinylated succinoglycan (HS-SG) was prepared by reacting succinic anhydride with succinoglycan (SG) exopolysaccharide isolated from Sinorhizobium meliloti. The rheological, physicochemical properties, and antioxidant effects of HS-SG were evaluated in comparison with SG. NMR and FTIR analyses confirmed that HS-SG retained the characteristic glycosidic structure of SG while showing a relative increase in succinyl functional groups.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!