Current expectations on future climate derive from coordinated experiments, which compile many climate models for sampling the entire uncertainty related to emission scenarios, initial conditions, and modelling process. Quantifying this uncertainty is important for taking decisions that are robust under a wide range of possible future conditions. Nevertheless, if uncertainty is too large, it can prevent from planning specific and effective measures. For this reason, reducing the spectrum of the possible scenarios to a small number of one or a few models that actually represent the climate pathway influencing natural ecosystems would substantially increase our planning capacity. Here we adopt a multidisciplinary approach based on the comparison of observed and expected spatial patterns of response to climate change in order to identify which specific models, among those included in the CMIP5, catch the real climate variation driving the response of natural ecosystems. We used dendrochronological analyses for determining the geographic pattern of recent growth trends for three European species of trees. At the same time, we modelled the climatic niche for the same species and forecasted the suitability variation expected across Europe under each different GCM. Finally, we estimated how well each GCM explains the real response of ecosystems, by comparing the expected variation with the observed growth trends. Doing this, we identified four climatic models that are coherent with the observed trends. These models are close to the highest range limit of the climatic variations expected by the ensemble of the CMIP5 models, suggesting that current predictions of climate change impacts on ecosystems could be underestimated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5734685 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189468 | PLOS |
Lab Anim
January 2025
Environment and Climate Change Canada, Burlington, Canada.
This paper reviews the methods and approaches used to humanely anesthetize (render unconscious) and or euthanize (kill) laboratory fish (in research settings), with a specific focus on the fathead minnow. We surveyed the literature (333 scientific studies published 2004-2021) to examine euthanasia methods used for various life stages. Our findings showed that many published scientific papers do not provide an adequate description of anesthesia or euthanasia methods, particularly for larval fathead minnows.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.
Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.
View Article and Find Full Text PDFAmbio
January 2025
Department of Arctic and Marine Biology, UiT Arctic University of Norway, Alta, Norway.
Indigenous and local knowledge (ILK) is increasingly used along with scientific knowledge (SK) to understand climate change. The multi evidence base (MEB) offers ways of combining knowledge systems together. Nonetheless, there is little guidance on how to use MEB approaches in research.
View Article and Find Full Text PDFInt J Biometeorol
January 2025
Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.
Climate change is making extreme heat events more frequent and intense. This negatively impacts many aspects of society, including organised sport. As the world's most watched sporting event, the FIFA World Cup commands particular attention around the threat of extreme heat.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK.
The contribution of health care to environmental and climate crises is significant, under-addressed, and with consequences for human health. This editorial is a call to action. Focusing on pharmaceuticals as a major environmental threat, we examine pharmaceutical impacts across their lifecycle, summarising greenhouse gas emissions, pollution, and biodiversity loss, and outlining challenges and opportunities to reduce this impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!