The class of ß-lactam antibiotics has proven highly efficient in targeting bacterial penicillin-binding proteins (PBP) leading to the blocking of the bacterial cell wall synthesis. However, the benefit of these drugs is limited because of bacterial resistance mechanisms; the most widespread resistance involves ß-lactamase enzymes (ßLACT) that inactivate ß-lactam-based molecules. We focused on PBPs and ßLACTs from enterobacteria, and performed a detailed in silico study of PBPs whose inactivation is lethal for the bacteria and of ßLACTs that have a PBP-type catalytic mechanism. The comparison of the sequences and structures of PBPs and ßLACTs shows an almost perfect conservation of the catalytic site, and a high spatial resemblance of the whole functional cavity despite a very low overall sequence identity. Some notable differences in the functional cavity were observed in the vicinity of the catalytic site: four tyrosines are well conserved in the PBPs, whereas the residues occurring at equivalent positions in the ßLACT families present other physicochemical properties. These tyrosines are thus good candidates to be targeted in designing new antibiotic molecules with increased affinity and specificity for PBPs, with the goal of overcoming drug resistance. Our analysis also identified residues that have similar characteristics in most ßLACT families and different properties in PBPs; these are interesting targets for new ligands that specifically inhibit ßLACT proteins. The in silico approach presented here can be extended to other protein systems in view of guiding and improving rational drug design.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2017.1418678DOI Listing

Publication Analysis

Top Keywords

penicillin-binding proteins
8
pbps ßlacts
8
catalytic site
8
functional cavity
8
ßlact families
8
pbps
6
rational antibiotic
4
antibiotic design
4
design silico
4
silico structural
4

Similar Publications

Enterococcus faecalis is responsible for numerous serious infections, and treatment options often include ampicillin combined with an aminoglycoside or dual beta-lactam therapy with ampicillin and a third-generation cephalosporin. The mechanism of dual beta-lactam therapy relies on the saturation of penicillin-binding proteins (PBPs). Ceftobiprole exhibits high affinity binding to nearly all E.

View Article and Find Full Text PDF

Potential Antibacterial of Leaf Sirih Merah Against Enterococcus Faecalis ATCC 29212 Bacteria.

Comb Chem High Throughput Screen

January 2025

Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia.

Background: Dental root canal failure is a disease caused by gram-positive bacteria, Enterococcus faecalis. The disease is caused by the bacterial cell wall consisting of a peptidoglycan layer that protects the bacteria from internal osmotic pressure. Peptidoglycan biosynthesis includes many enzymes, such as MurA, Penicillin-binding protein (PBP), and SrtA.

View Article and Find Full Text PDF

In Silico Subtractive Proteome Analysis to Design Multi-Epitope-Based Subunit Vaccine against .

J Microbiol Biotechnol

November 2024

Fatemah AlMalki, Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia.

is a gram-negative, facultatively anaerobic bacterium typically found in the oropharynx and respiratory tract of humans. It is responsible for various infections, including head-and-neck infections, pericarditis, and abscesses of the deltoid, perirenal tissue, brain, and liver. Increasing antibiotic resistance requires urgent identification of novel drug targets to fight this bacterium.

View Article and Find Full Text PDF

Purpose: To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB.

Methods: A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS.

View Article and Find Full Text PDF

Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!