Current in vitro models of human intestine commonly fail to mimic the complex intestinal functions and features required for drug development and disease research. Here, we deeply investigate the interaction existing between epithelium and the underneath stroma, and its role in the epithelium morphogenesis. We cultured human intestinal subepithelial myofibroblasts (ISEMFs) in two different 3D configurations: 3D-collagen gel equivalent (3D-CGE) and 3D cell-synthetized stromal equivalent (3D-CSSE). The 3D-CGEs were obtained by means of the traditional collagen-based cell technique and the 3D-CSSE were obtained by bottom-up tissue engineering strategy. The biophysical properties of both 3D models with regard to cell growth and composition (via histological analysis, immunofluorescence, and multiphoton imaging) were assessed. Then, human colorectal adenocarcinoma cell line (CaCo-2) was cultured on both the 3D constructs in order to produce the intestinal model. We identified higher levels of matrix-associated proteins from ISEMFs cultured in 3D-CSSE compared to 3D-CGE. Furthermore, multiphoton investigation revealed differences in the collagen network architecture in both models. At last, the more physiologically relevant stromal environment of the 3D-CSSE drove the CaCo-2 cell differentiation toward the four different type of intestinal epithelial cells (absorptive, mucus-secretory, enteroendocrine, and Paneth) phenotype and promotes, in contrast to the 3D-CGE, the production of the basement membrane. Taken together, these results highlight a fundamental role of the 3D stromal environment in addressing a correct epithelium morphogenesis as well as epithelial-stromal interface establishment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26522DOI Listing

Publication Analysis

Top Keywords

epithelium morphogenesis
12
stromal environment
8
intestinal
5
stromal
4
stromal tissue
4
tissue equivalent
4
equivalent intestinal
4
epithelium
4
intestinal epithelium
4
morphogenesis vitro
4

Similar Publications

Retinoic acid drives surface epithelium fate determination through the TCF7-MSX2 axis.

Cell Mol Life Sci

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Understanding how embryonic progenitors decode extrinsic signals and transform into lineage-specific regulatory networks to drive cell fate specification is a fundamental, yet challenging question. Here, we develop a new model of surface epithelium (SE) differentiation induced by human embryonic stem cells (hESCs) using retinoic acid (RA), and identify BMP4 as an essential downstream signal in this process. We show that the retinoid X receptors, RXRA and RXRB, orchestrate SE commitment by shaping lineage-specific epigenetic and transcriptomic landscapes.

View Article and Find Full Text PDF

The anatomy of molar teeth is important both functionally for chewing food and in evolutionary studies as a well-preserved species marker in the fossil record. Molar teeth begin to develop their characteristic biting-surface shape of cusps (peaks) and sulci (valleys) at the bell stage, when corresponding folds in the dental epithelium become apparent. Theories about the developmental mechanisms of cusp and sulcus morphogenesis have hitherto largely focused on the non-proliferating nature of the secondary enamel knots (EKs) at the cusp tips.

View Article and Find Full Text PDF

Transcriptional factor ISL1 regulates palate development by tuning the SHH cascade.

FEBS J

December 2024

Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China.

Cleft palate is one of the most common birth defects in humans, and palate morphogenesis depends on epithelial-mesenchymal interaction. In this study, we report that ablation of Isl1 in the epithelium leads to complete cleft palate. A significant reduction in mesenchymal cell proliferation was detected in the Isl1 mutant palates, but there was no significant difference in apoptosis between wild-type and mutant embryos.

View Article and Find Full Text PDF

The geometric basis of epithelial convergent extension.

Elife

December 2024

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States.

Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating embryos.

View Article and Find Full Text PDF

Active curling of epithelial monolayers dominated by actin cytoskeleton mechanics.

Phys Rev E

November 2024

Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Active curling of epithelial tissues, as an indispensable component of developmental morphogenesis, occurs frequently both in vivo and in vitro microenvironments. Deciphering the mechanisms underlying the active curling of epithelial monolayers is crucial for understanding many physiological and pathological processes. Here, a multiscale structure-based cell monolayer model and an active constitutive relation are established to characterize this spontaneous curling of the epithelial tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!