A fundamental question that often occurs in statistical tests is the normality of distributions. Countless distributions exist in science and life, but one distribution that is obtained via permutations, usually referred to as permutation distribution, is interesting. Although a permutation distribution should behave in accord with the central limit theorem, if both the independence condition and the identical distribution condition are fulfilled, no studies have corroborated this concurrence in functional magnetic resonance imaging data. In this work, we used Anderson-Darling test to evaluate the accordance level of permutation distributions of classification accuracies to normality expected under central limit theorem. A simulation study has been carried out using functional magnetic resonance imaging data collected, while human subjects responded to visual stimulation paradigms. Two scrambling schemes are evaluated: the first based on permuting both the training and the testing sets and the second on permuting only the testing set. The results showed that, while a normal distribution does not adequately fit to permutation distributions most of the times, it tends to be quite well acceptable when mean classification accuracies averaged over a set of different classifiers is considered. The results also showed that permutation distributions can be probabilistically affected by performing motion correction to functional magnetic resonance imaging data, and thus may weaken the approximation of permutation distributions to a normal law. Such findings, however, have no relation to univariate/univoxel analysis of functional magnetic resonance imaging data. Overall, the results revealed a strong dependence across the folds of cross-validation and across functional magnetic resonance imaging runs and that may hinder the reliability of using cross-validation. The obtained p-values and the drawn confidence level intervals exhibited beyond doubt that different permutation schemes may beget different permutation distributions as well as different levels of accord with central limit theorem. We also found that different permutation schemes can lead to different permutation distributions and that may lead to different assessment of the statistical significance of classification accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0962280215601707DOI Listing

Publication Analysis

Top Keywords

functional magnetic
24
magnetic resonance
24
resonance imaging
24
permutation distributions
24
imaging data
16
central limit
12
limit theorem
12
permutation
10
distributions
8
permutation distribution
8

Similar Publications

Background: Studies are still limited on the isolated effect of retear after arthroscopic rotator cuff repair (ARCR) on functional outcomes after the midterm period.

Purpose: To assess the effect of retear at midterm follow-up after ARCR and to identify factors associated with the need for revision surgery.

Study Design: Cohort study; Level of evidence, 3.

View Article and Find Full Text PDF

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

Metabotropic glutamate (mGlu) receptors are candidate drug targets for therapeutic intervention in Parkinson's disease (PD). Here we focused on mGlu3, a receptor subtype involved in synaptic regulation and neuroinflammation. mGlu3 mice showed an enhanced nigro-striatal damage and microglial activation in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is a high-risk factor for dementia and dysphagia; therefore, early intervention is vital. The effectiveness of intermittent theta burst stimulation (iTBS) targeting the right dorsal lateral prefrontal cortex (rDLPFC) remains unclear.

Methods: Thirty-six participants with MCI were randomly allocated to receive real (n = 18) or sham (n = 18) iTBS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!