Phosphine (PH) is a toxidrome-spanning chemical that is widely used as an insecticide and rodenticide. Exposure to PH causes a host of target organ and systemic effects, including oxidative stress, cardiopulmonary toxicity, seizure-like activity and overall metabolic disturbance. A custom dynamic inhalation gas exposure system was designed for the whole-body exposure of conscious male Sprague-Dawley rats (250-350 g) to PH. An integrated plethysmography system was used to collect respiratory parameters in real-time before, during and after PH exposure. At several time points post-exposure, rats were euthanized, and various organs were removed and analyzed to assess organ and systemic effects. The 24 h post-exposure LCt, determined by probit analysis, was 23,270 ppm × min (32,345 mg × min/m). PH exposure affects both pulmonary and cardiac function. Unlike typical pulmonary toxicants, PH induced net increases in respiration during exposure. Gross observations of the heart and lungs of exposed rats suggested pulmonary and cardiac tissue damage, but histopathological examination showed little to no observable pathologic changes in those organs. Gene expression studies indicated alterations in inflammatory processes, metabolic function and cell signaling, with particular focus in cardiac tissue. Transmission electron microscopy examination of cardiac tissue revealed ultrastructural damage to both tissue and mitochondria. Altogether, these data reveal that in untreated, un-anesthetized rats, PH inhalation induces acute cardiorespiratory toxicity and injury, leading to death and that it is characterized by a steep dose-response curve. Continued use of our interdisciplinary approach will permit more effective identification of therapeutic windows and development of rational medical countermeasures and countermeasure strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309866PMC
http://dx.doi.org/10.1080/08958378.2017.1406564DOI Listing

Publication Analysis

Top Keywords

cardiac tissue
12
conscious male
8
organ systemic
8
systemic effects
8
pulmonary cardiac
8
exposure
6
rats
5
physiology toxicology
4
toxicology acute
4
acute inhalation
4

Similar Publications

Septicemic omphalophlebitis by Streptococcus equi subsp. zooepidemicus in a southern right whale calf (Eubalaena australis).

Vet Res Commun

January 2025

Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.

Southern right whales (Eubalaena australis) are mysticete cetaceans commonly observed in the coastal waters of Brazil, particularly in Santa Catarina State. There is limited understanding of the causes of calf mortality in this species, particularly concerning infectious diseases. We report a case of omphalophlebitis caused by Streptococcus equi subsp.

View Article and Find Full Text PDF

Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) is a common acute and severe reason of death in the intensive care unit. Although the pathogenesis is complicated and multifactorial, elevated inflammation and oxidative stress are considered as fundamental mechanisms for the progression of ALI. Anemonin is a natural compound with diverse biological properties including anti-inflammatory and anti-oxidative effects.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Use of Brain Death Recipients in Xenotransplantation: A Double-Edged Sword.

Xenotransplantation

January 2025

Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Organ transplants are used to treat many end-stage diseases, but a shortage of donors means many patients cannot be treated. Xenogeneic organs have become an important part of filling the donor gap. Many current studies of kidney, heart, and liver xenotransplantation have used gene-edited pig organs on brain-dead recipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!