Introduction: Adverse drug interaction is a major cause of morbidity and mortality. Its occurrence is influenced by a multitude of factors. The influences of drug-drug interactions (DDIs) can be minimized through creation of awareness to health care professionals.
Objective: The objective of this study was to assess DDIs in Ayder Comprehensive Specialized Hospital (ACSH).
Methodology: A retrospective study design was employed on patient prescriptions available in the outpatient department of pharmacy and filled from September 2016 to February 2017 in ACSH.
Result: From the 600 prescription records assessed, the average number of drugs on single prescription was 2.73. Regarding the interaction observed 34 (9.63%) prescriptions with major drug-drug interaction, 210 (59.5%) moderate, 87 (24.65%) minor, and 22 (6.22%) unknown were identified. Age category showed significant association to affect the occurrence of DDIs and polypharmacy had statistically significant association with DDIs in bivariate analysis which was lost in adjusted OR.
Conclusion: From the current study it can be concluded that nearly half of the prescription ordered in ACSH contained DDIs and from the prescription with interacting medications majority of them had moderate DDIs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698828 | PMC |
http://dx.doi.org/10.1155/2017/9792363 | DOI Listing |
Inflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia.
Phosphodiesterase 5 (PDE5) inhibitors have shown great potential in treating Alzheimer's disease by improving memory and cognitive function. In this study, we evaluated fluspirilene, a drug commonly used to treat schizophrenia, as a potential PDE5 inhibitor using computational methods. Molecular docking revealed that fluspirilene binds strongly to PDE5, supported by hydrophobic and aromatic interactions.
View Article and Find Full Text PDFClin Transl Sci
January 2025
Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.
The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00122 Rome, Italy.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.
: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!