Comparative Analysis of Proteome-Wide Lysine Acetylation in Juvenile and Adult .

Front Microbiol

State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.

Published: November 2017

Schistosomiasis is a devastating parasitic disease caused by tremotodes of the genus . Eggs produced by sexually mature schistosomes are the causative agents of for pathogenesis and transmission. Elucidating the molecular mechanism of schistosome development and sexual maturation would facilitate the prevention and control of schistosomiasis. Acetylation of lysine is a dynamic and reversible post-translational modification playing keys role in many biological processes including development in both eukaryotes and prokaryotes. To investigate the impacts of lysine acetylation on () development and sexual maturation, we used immunoaffinity-based acetyllysine peptide enrichment combined with mass spectrometry (MS), to perform the first comparative analysis of proteome-wide lysine acetylation in both female and male, juvenile (18 days post infection, 18 dpi) and adult (28 dpi) schistosome samples. In total, we identified 874 unique acetylated sites in 494 acetylated proteins. The four samples shared 47 acetylated sites and 46 proteins. More acetylated sites and proteins shared by both females and males were identified in 28 dpi adults (189 and 143, respectively) than in 18 dpi schistosomula (76 and 59, respectively). More stage-unique acetylated sites and proteins were also identified in 28 dpi adults (494 and 210, respectively) than in 18 dpi schistosomula (73 and 44, respectively). Functional annotation showed that in different developmental stages and genders, a number of proteins involving in muscle movement, glycometabolism, lipid metabolism, energy metabolism, environmental stress resistance, antioxidation, etc., displayed distinct acetylation profiles, which was in accordance with the changes of their biological functions during schistosome development, suggesting that lysine acetylation modification exerted important regulatory roles in schistosome development. Taken together, our data provided the first comparative global survey of lysine acetylation in juvenile and adult , which would deepen our understanding of the molecular mechanism of schistosome development and sexual maturation, and provide clues for the development of new anti-schistosome strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715381PMC
http://dx.doi.org/10.3389/fmicb.2017.02248DOI Listing

Publication Analysis

Top Keywords

lysine acetylation
20
schistosome development
16
acetylated sites
16
development sexual
12
sexual maturation
12
sites proteins
12
comparative analysis
8
analysis proteome-wide
8
proteome-wide lysine
8
acetylation juvenile
8

Similar Publications

Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

Design, synthesis, and antitumor evaluation of triazolopyridine derivatives as novel inhibitors for BRD4.

Eur J Med Chem

January 2025

Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

The bromodomain-containing protein 4 (BRD4) is an epigenetic regulatory 'reader' belonging to the bromodomain and extra-terminal domain (BET) family. Several studies have demonstrated that the high expression of BRD4 is closely related to the occurrence and development of various cancers, so BRD4 has become a promising target for cancer treatment. However, there are no drugs targeting BRD4 available on the market, the development of novel BRD4 inhibitors is of great significance.

View Article and Find Full Text PDF

Primary cilia are sensory organelles that regulate various signaling pathways. When microtubules are compared to a highway, motor proteins carry and transport cargo proteins, which are tuned by post-translational modifications, such as acetylation. However, the role of acetylation in primary cilia regulation remains unclear.

View Article and Find Full Text PDF

Tubulin Acetylation Enhances Microtubule Stability in Trabecular Meshwork Cells Under Mechanical Stress.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.

Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.

Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!