In order to better understand the process of breast cancer metastasis, we have generated a mammary epithelial progression series of increasingly aggressive cell lines that metastasize to lung. Here we demonstrate that upregulation of an endoplasmic reticulum (ER) to Golgi trafficking gene signature in metastatic cells enhances transport kinetics, which promotes malignant progression. We observe increased ER-Golgi trafficking, an altered secretome and sensitivity to the retrograde transport inhibitor brefeldin A (BFA) in cells that metastasize to lung. CREB3 was identified as a transcriptional regulator of upregulated ER-Golgi trafficking genes ARF4, COPB1, and USO1, and silencing of these genes attenuated the metastatic phenotype in vitro and lung colonization in vivo. Furthermore, high trafficking gene expression significantly correlated with increased risk of distant metastasis and reduced relapse-free and overall survival in breast cancer patients, suggesting that modulation of ER-Golgi trafficking plays an important role in metastatic progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844805 | PMC |
http://dx.doi.org/10.1038/s41388-017-0023-0 | DOI Listing |
Nat Commun
December 2024
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.
View Article and Find Full Text PDFEur J Pharm Biopharm
December 2024
School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China. Electronic address:
Oral delivery of peptide drugs remains one of the most formidable challenges in the frontier of pharmaceutical research. Peptide drugs typically suffer from exceptionally low oral bioavailability, primarily attributed to rigorous enzymatic degradation within the gastrointestinal (GI) tract, limited ability to traverse the enterocyte barrier, and significant first-pass hepatic metabolism. Absorption of peptide drugs via the lymphatic route could potentially bypass intracellular lysosome degradation and hepatic first-pass metabolism.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
Membrane trafficking is a crucial function of all cells and is regulated at multiple levels from vesicle formation, packaging, and localization to fusion, exocytosis, and endocytosis. Rab GTPase proteins are core regulators of eukaryotic membrane trafficking, but developmental roles of specific Rab GTPases are less well characterized, potentially because of their essentiality for basic cellular function. gonad development entails the coordination of cell growth, proliferation, and migration-processes in which membrane trafficking is known to be required.
View Article and Find Full Text PDFMol Cells
December 2024
Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
bioRxiv
November 2024
University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US.
Intracellular trafficking relies on small vesicular intermediates, though their specific role in Golgi function is still debated. To clarify this, we induced acute dysfunction of the Conserved Oligomeric Golgi (COG) complex and analyzed vesicles from cis, medial, and trans-Golgi compartments. Proteomic analysis of Golgi-derived vesicles from wild-type cells revealed distinct molecular profiles, indicating a robust recycling system for Golgi proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!