A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An integrated tool for determining the primary origin site of metastatic tumours. | LitMetric

AI Article Synopsis

  • Researchers are developing a gene-expression classifier to improve the identification of primary sites for metastatic cancers, as current methods are often inaccurate and subjective.
  • The study utilized the largest reference database of known tumor samples to create and validate the classifier, which involved testing on both training and real-world samples.
  • The classifier showed high accuracy, identifying 86.6% of cancer superclasses in the training phase and 83.81% in the validation phase, indicating it could significantly enhance the diagnostic process for cancers of unknown origin.

Article Abstract

Aims: Cancers of unknown primary sites account for 3%-5% of all malignant neoplasms. Current diagnostic workflows based on immunohistochemistry and imaging tests have low accuracy and are highly subjective. We aim to develop and validate a gene-expression classifier to identify potential primary sites for metastatic cancers more accurately.

Methods: We built the largest Reference Database (RefDB) reported to date, composed of microarray data from 4429 known tumour samples obtained from 100 different sources and divided into 25 cancer superclasses formed by 58 cancer subclass. Based on specific profiles generated by 95 genes, we developed a gene-expression classifier which was first trained and tested by a cross-validation. Then, we performed a double-blinded retrospective validation study using a real-time PCR-based assay on a set of 105 metastatic formalin-fixed, paraffin-embedded (FFPE) samples. A histopathological review performed by two independent pathologists served as a reference diagnosis.

Results: The gene-expression classifier correctly identified, by a cross-validation, 86.6% of the expected cancer superclasses of 4429 samples from the RefDB, with a specificity of 99.43%. Next, the performance of the algorithm for classifying the validation set of metastatic FFPE samples was 83.81%, with 99.04% specificity. The overall reproducibility of our gene-expression-classifier system was 97.22% of precision, with a coefficient of variation for inter-assays and intra-assays and intra-lots <4.1%.

Conclusion: We developed a complete integrated workflow for the classification of metastatic tumour samples which may help on tumour primary site definition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204949PMC
http://dx.doi.org/10.1136/jclinpath-2017-204887DOI Listing

Publication Analysis

Top Keywords

gene-expression classifier
12
primary sites
8
cancer superclasses
8
ffpe samples
8
integrated tool
4
tool determining
4
determining primary
4
primary origin
4
origin site
4
metastatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!