In our previous study, we have reported the molecular presence of Na 1.8 in bull spermatozoa and its potential involvement in regulation of sperm functions. With the selective blocking of Nav 1.8 using A-803467, alterations in sperm functions were observed, therefore, we envisaged of investigating the involvement of Na in regulating sperm function and the mechanism(s) involved in it using veratridine, a selective opener of Na channels. Forty ejaculates were collected from four Hariana bulls and semen samples were pooled in view of the non-significant variations between the different ejaculates. Treatment of sperm cells with veratridine (6, 8, and 10 μM) resulted in concentration- and time-dependent increase in forward progressive sperm motility and it persisted up to 6 h. However, hyperactive motility was induced by veratridine at higher concentrations (8 and 10 μM) and after 2 h of incubation, which was confirmed by subjective assessment followed by chlortetracycline staining showing the increased B-pattern spermatozoa, and thereby suggesting the involvement of Na in regulation of capacitation in spermatozoa. To substantiate the functional study observations especially veratridine-induced capacitation, immunoblotting and indirect immune fluorescence assays were performed for detection of the tyrosine-phosphorylated proteins. The immune blot study revealed the presence of five tyrosine phosphorylated proteins, namely-p17, p30, p54, p90 and p100. The p17 protein showed the highest band intensity compared to other protein bands indicating its potential involvement in the process of capacitation. Immunolocalization study revealed positive immunoreactivity for tyrosine phosphorylated proteins in the middle piece, post acrosomal region (high fluorescence) and tail of the spermatozoa (low fluorescence). From the results of present study, it is evident that activation of Na by veratridine, especially at higher concentrations, induced capacitation which is evidently mediated through phosphorylation of the tyrosine containing proteins localized in the post acrosomal regions, middle piece and tail of the spermatozoa. However, further studies will help in unraveling the involvement of Na and other ion channels regulating different physiological functions of sperm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2017.11.024 | DOI Listing |
Int J Mol Sci
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.
N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Centre for Reproductive Science, University of Newcastle, Newcastle, NSW 2308, Australia.
(1) Background: The RoXsta system has been developed as a rapid, effective means of profiling different types of antioxidant activity. The purpose of this study was to examine its performance utilizing a diverse array of biological fluids including semen, blood plasma, serum, urine, saliva, follicular fluid and plant extracts. (2) Methods: The RoXsta system was used to assess the ability of different fluids to suppress free radical formation as well as scavenge a variety of toxic oxygen metabolites including free radicals and both hydrogen and organic peroxides.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
Background: The cryoinjury of semen during cryopreservation reduces sperm motility, constraining the application of artificial insemination (AI) in bovine reproduction. Some fertility markers, related to sperm motility before and after freezing have been identified. However, little is known about the biological mechanism through which freezing reduces sperm motility.
View Article and Find Full Text PDFCryobiology
January 2025
Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, EC010205, Cuenca, Ecuador. Electronic address:
This study evaluated the effectiveness of Percoll® density gradient centrifugation (Percoll-DGC) for selecting bull epididymal sperm prior to conventional slow (CS) or ultra-rapid (UR) freezing and its effects on sperm quality. Fifteen pooled samples from 30 epididymides (2 different samples/pool) of 15 bulls were split into two aliquots assigned to either CS or UR freezing. Samples were either selected using Percoll-DGC (40/80 %) or left non-selected (control), resulting in four pre-freezing treatments: Percoll-CS, Control-CS, Percoll-UR, and Control-UR.
View Article and Find Full Text PDFAnim Reprod Sci
December 2024
Faculty of Veterinary Medicine, University Antonio Nariño, Popayán, Colombia. Electronic address:
Despite Latin America's rich biodiversity, active genetic material conservation programs are scarce. This study investigates potential freezability markers in both sperm and seminal plasma (SP) in Chino Santandereano, a Colombian Creole breed. Thirty ejaculates from ten Chino Santandereano bulls were cryopreserved and subsequently classified as of good (GFE) or poor (PFE) freezability according to their post-thaw total sperm motility (TMOT) and plasma membrane integrity (PMI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!