Soil leaching tests are commonly used to evaluate the leachability of hazardous materials, such as heavy metals, from the soil. Batch leaching tests often enhance soil colloidal mobility and may require solid-liquid separation procedures to remove excess soil particles. However, batch leaching test results depend on particles that can pass through a 0.45μm membrane filter and are influenced by test parameters such as centrifugal intensity and filtration volume per filter. To evaluate these parameters, we conducted batch leaching experiments using metal-contaminated soils and focused on the centrifugal intensity and filtration volume per filter used in solid-liquid separation methods currently employed in standard leaching tests. Our experiments showed that both centrifugal intensity and filtration volume per filter affected the reproducibility of batch leaching tests for some soil types. The results demonstrated that metal concentrations in the filtrates significantly differed according to the centrifugal intensity when it was 3000 g for 2h or less. Increased filtration volume per filter led to significant decreases in filtrate metal concentrations when filter cakes formed during filtration. Comparison of the filtration tests using 0.10 and 0.45μm membrane filters showed statistically significant differences in turbidity and metal concentration. These findings suggest that colloidal particles were not adequately removed from the extract and contributed substantially to the apparent metal concentrations in the leaching test of soil containing colloidal metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.12.048DOI Listing

Publication Analysis

Top Keywords

leaching tests
20
batch leaching
16
centrifugal intensity
16
filtration volume
16
volume filter
16
solid-liquid separation
12
intensity filtration
12
metal concentrations
12
leaching
8
soil leaching
8

Similar Publications

Evaluation of testing approaches for constituent leaching from electric arc furnace (EAF) slags.

J Environ Manage

January 2025

Department of Civil and Environmental Engineering, Vanderbilt University, PMB 351826, Nashville, TN, 37235-1826, USA. Electronic address:

Increased usage of electric arc furnace (EAF) slags as soil amendments and surface aggregates raises concerns regarding heavy metal release. However, no standardized leaching characterization approach exists for EAF slags and other industrial materials. This study compares test results for three EAF slags using several testing approaches: (i) total content analysis, (ii) single-batch extractions (i.

View Article and Find Full Text PDF

Chemical insight into pros and cons of coffees from different regions.

Sci Rep

January 2025

Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233, Gdańsk, Poland.

The main aim of this work was to study the chemical composition of eighteen ground coffees from different countries and continents with regard to the content of hazardous substances as radioactive elements (K, Ra, Ra, U, U and Cs), metals, including heavy metals, aluminum and some microelements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as well as substances that have a positive effect on human health and well-being (polyphenols, proteins, fats and caffeine). The tests were carried out before and after the brewing process using the following techniques: gamma and beta spectrometry, a microwave-induced plasma optical emission spectrometer (MIP-OES), gravimetric method, UV-Vis spectrophotometry as well as thin-layer chromatography. The leaching percentage of certain elements/compounds in coffee infusions was also measured.

View Article and Find Full Text PDF

Release of Bisphenol A and Other Volatile Chemicals from New Epoxy Drinking Water Pipe Liners: The Role of Manufacturing Conditions.

Environ Sci Technol

January 2025

Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Cured-in-place-pipe (CIPP) technology has begun to be adopted for drinking water pipe repairs, and limited information exists about its drinking water quality impacts. CIPP involves the manufacture of a new plastic pipe inside a buried damaged pipe. In this study, the chemical composition of the raw materials and CIPP water quality impacts were examined.

View Article and Find Full Text PDF

Laser scribed proton exchange membranes for enhanced fuel cell performance and stability.

Nat Commun

December 2024

Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

Globally, various policies are being implemented to phase out plastic, and South Korea has set targets to reduce waste and increase recycling rates by 2030. Concerns about managing microplastic pollution are growing. Most advanced research has primarily focused on aquatic ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!