Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Anti-TNF inhibitors successfully improve the quality of life of patients with inflammatory disease. Unfortunately, not all patients respond to anti-TNF therapy, and some patients show paradoxical immune side effects, which are poorly understood. Surprisingly, anti-TNF agents were shown to promote IL-17A production with as yet unknown clinical implications.
Objective: We sought to investigate the molecular mechanism underlying anti-TNF-driven IL-17A expression and the clinical implications of this phenomenon.
Methods: Fluorescence-activated cell sorting, RNA sequencing, quantitative real-time PCR, Western blotting, small interfering RNA interference, and kinase inhibitors were used to study the molecular mechanisms in isolated human CD4 T cells from healthy donors. The clinical implication was studied in blood samples of patients with inflammatory bowel disease (IBD) receiving anti-TNF therapy.
Results: Here we show that anti-TNF treatment results in inhibition of the anti-inflammatory molecule TNF-α-induced protein 3 (TNFAIP3)/A20 in memory CD4 T cells. We found an inverse relationship between TNFAIP3/A20 expression levels and IL-17A production. Inhibition of TNFAIP3/A20 promotes kinase activity of p38 mitogen-activated protein kinase and protein kinase C, which drives IL-17A expression. Regulation of TNFAIP3/A20 expression and cognate IL-17A production in T cells are specifically mediated through TNF receptor 2 signaling. Ex vivo, in patients with IBD treated with anti-TNF, we found further evidence for an inverse relationship between TNFAIP3/A20 expression levels and IL-17A-producing T cells.
Conclusion: Anti-TNF treatment interferes in the TNFAIP3/A20-mediated anti-inflammatory feedback loop in CD4 T cells and promotes kinase activity. This puts TNFAIP3/A20, combined with IL-17A expression, on the map as a potential tool for predicting therapy responsiveness or side effects of anti-TNF therapy. Moreover, it provides novel targets related to TNFAIP3/A20 activity for superior therapeutic regimens in patients with IBD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2017.11.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!