Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry for the determination of selenomethionine and selenocysteine in algae and yeast.

J Chromatogr A

Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Masaryk University, Žerotínovo nám. 9, 601 77, Brno, Czech Republic. Electronic address:

Published: January 2018

In this work we present a simple and cost-effective approach for the determination of selenium species in algae and yeast biomass, based on a combination of thin-layer chromatography (TLC) with diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). Extraction of freeze-dried biomass was performed in 4M methanesulphonic acid and the selenium species were vaporized from cellulose TLC plates employing a continuous-wave infrared diode laser with power up to 4 W using a simple laboratory-built apparatus. Selenomethionine and selenocysteine were quantified with limits of detection 3 μg L in a Se-enriched microalgae Chlorella vulgaris and yeast certified reference material SELM-1. Results delivered by TLC-DLTV ICP MS were consistent with those obtained by a routine coupling of high-performance liquid chromatography (HPLC) to ICP MS. In addition, the TLC approach is capable of analyzing extract containing even undiluted crude hydrolysates that could damage HPLC columns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2017.12.017DOI Listing

Publication Analysis

Top Keywords

diode laser
12
thin-layer chromatography
8
laser thermal
8
thermal vaporization
8
vaporization inductively
8
inductively coupled
8
coupled plasma
8
plasma mass
8
mass spectrometry
8
selenomethionine selenocysteine
8

Similar Publications

This study presents a novel optoporation technique using a titanium-coated TiO microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO microstructure (MS).

View Article and Find Full Text PDF

The aim of this study was to compare the effectiveness of different types of low level laser treatment (LLLT) in reducing pain levels, changing oxygen saturation and bite force in patients with myofacial pain syndrome (MPS). 45 patients were randomly assigned to three groups: Group 1 (GRR laser, n = 15) received LLLT with Gallium-Aluminium-Arsenide (GaAlAs) diode laser with a wavelength of 904 nm and red laser with a wavelength of 650 nm over masseter muscle region. Group 2 (Nd: YAG laser, n = 15) were treated with Neodymium-doped Yttrium Aluminium Garnet laser with a wavelength of 1064 nm and the same protocol with Nd: YAG laser was performed in the Group 3 (placebo, n = 15) using sham device.

View Article and Find Full Text PDF

This in-vitro study assessed the influence of the shade of human teeth on the transmission of near-infrared light. A total of 40 teeth were used. After cleaning the root surface and removing cementum, the teeth were sectioned into slices 3 mm thick, with each comprising a portion of the crown (enamel-dentine (ED)) and of the root (dentine only).

View Article and Find Full Text PDF

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

Mid-infrared spectral analysis has long been recognized as the most accurate noninvasive blood glucose measurement method, yet no practical compact mid-infrared blood glucose sensor has ever passed the accuracy benchmark set by the USA Food and Drug Administration (FDA): to substitute for the finger-pricking glucometers in the market, a new sensor must first show that 95% of their glucose measurements have errors below 15% of these glucometers. Although recent innovative exploitations of the well-established Fourier-transform infrared (FTIR) spectroscopy have reached such FDA accuracy benchmarks, an FTIR spectrometer is too bulky. The advancements of quantum cascade lasers (QCLs) can lead to FTIR spectrometers of reduced size, but compact QCL-based noninvasive blood glucose sensors are not yet available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!