Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.

Bioorg Med Chem Lett

Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. Electronic address:

Published: January 2018

We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2017.12.008DOI Listing

Publication Analysis

Top Keywords

rna aptamer
12
atp-binding rna
8
quencher-free molecular
8
molecular aptamer
8
rna-based qf-mabs
8
aptamer
5
facile conversion
4
conversion atp-binding
4
aptamer quencher-free
4
aptamer beacon
4

Similar Publications

Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA.

View Article and Find Full Text PDF

Highly sensitive and catalytic electrochemical aptamer-based biosensor for β-lactoglobulin via coupling redox recycling background minimization with DNAzyme amplification.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.

Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.

View Article and Find Full Text PDF

Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.

View Article and Find Full Text PDF

Applying hollow octahedron PtNPs/Pd-CuO nanozyme and highly conductive AuPtNPs/Ni-Co NCs to colorimetric -electrochemical dual-mode aptasensor for AFB1 detection.

Anal Chim Acta

February 2025

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.

Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.

View Article and Find Full Text PDF

We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!