When faced with harsh environmental conditions, the South American marsupial, monito del monte (Dromiciops gliroides), reduces its body temperature and uses either daily torpor or multiday hibernation to survive. This study used ELISA and multiplex assays to characterize the responses to hibernation by three regulatory components of protein translation machinery [p-eIF2α(S51), p-eIF4E(S209), p-4EBP(Thr37/46)] and eight targets involved in upstream signaling control of translation [p-IGF-1R(Tyr1135/1136), PTEN(S380), p-Akt(S473), p-GSK-3α(S21), p-GSK-3β(S9), p-TSC2(S939), p-mTOR(S2448), and p70S6K(T412)]. Liver, brain and kidney were analyzed comparing control and hibernation (4days continuous torpor) conditions. In the liver, increased phosphorylation of IGF-1R, Akt, GSK-3β, TSC2, mTOR, eIF2α, and 4EBP (1.60-1.98 fold compared to control) occurred during torpor suggesting that the regulatory phosphorylation cascade and protein synthesis remained active during torpor. However, responses by brain and kidney differed; torpor resulted in increased phosphorylation of GSK-3β (2.15-4.17 fold) and TSC2 (2.03-3.65 fold), but phosphorylated Akt decreased (to 34-62% of control levels). Torpor also led to an increase in phosphorylated eIF2α (1.4 fold) content in the brain. These patterns of differential protein phosphorylation in brain and kidney were indicative of suppression of protein translation but also could suggest an increase in antioxidant and anti-apoptotic signaling during torpor. Previous studies of liver metabolism in hibernating eutherian mammals have shown that Akt kinase and its downstream signaling components play roles in facilitating hypometabolism by suppressing energy expensive anabolic processes during torpor. However, the results in this study reveal differences between eutherian and marsupial hibernators, suggesting alternative actions of liver Akt during torpor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2017.12.006DOI Listing

Publication Analysis

Top Keywords

protein translation
12
brain kidney
12
torpor
9
south american
8
american marsupial
8
dromiciops gliroides
8
translation machinery
8
increased phosphorylation
8
control
5
akt
5

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!