Developmental dynamics of the epigenome: A longitudinal study of three toddlers.

Neurotoxicol Teratol

Dept. of Psychology, University of Houston, Houston, TX, USA; Dept. of Psychology, Saint Petersburg State University, St. Petersburg, Russia; Child Study Center, Yale University, New Haven, CT, USA; Office of the Rector, Moscow State University of Psychology and Education, Moscow, Russia. Electronic address:

Published: January 2020

Epigenetic regulation plays an important role in development, at the embryonic stages and later during the lifespan. Some epigenetic marks are highly conserved throughout the lifespan whereas others are closely associated with specific age periods and/or particular environmental factors. Little is known about the dynamics of epigenetic regulation during childhood, especially during the period of rapid early development. Our study was aimed to determine whether the developmental program at the early stages of human development is accompanied by significant changes in the systems of genome regulation, specifically, by genome-wide changes in DNA methylation. Using a sequencing approach (MBD-seq) we investigated genome-wide DNA methylation patterns in the T-lymphocytes of three healthy toddlers at two timepoints within the second year of life. Pairwise comparison of the methylation patterns across the individuals and time points was conducted to determine common longitudinal changes in the DNA methylation patterns. Despite relatively high interindividual variability in their epigenetic profiles and the dynamics of these profiles during the second year of life, all children showed consistent changes in the DNA methylation patterns of genes involved in the control of the immune system and genes related to the development of the CNS. Thereby, we provide evidence that early development might be accompanied by epigenetic changes in specific functional groups of genes; many such epigenetic changes appear to be related to the rapid development of the CNS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ntt.2017.12.006DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
methylation patterns
16
changes dna
12
epigenetic regulation
8
early development
8
development accompanied
8
second year
8
year life
8
development cns
8
epigenetic changes
8

Similar Publications

Bisphenol A alters JUN promoter methylation, impairing steroid metabolism in placental cells and linking to sub-representative phenotypes.

Gene

January 2025

School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China. Electronic address:

Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism.

View Article and Find Full Text PDF

Decoding the protein methylome: Identification, validation, and functional insights.

Bioorg Med Chem

December 2024

Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States. Electronic address:

Protein methylation regulates diverse cellular processes including gene expression and DNA repair. This review discusses the methods of identifying and validating substrates for protein methyltransferases (MTases), as well as the biological roles of methylation. Meanwhile, we outline continued efforts necessary to fully map MTase-substrate pairs and uncover the complex regulatory roles of protein methylation in cellular function.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.

View Article and Find Full Text PDF

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Childhood maltreatment exposure (CME) increases the risk of adverse long-term health consequences for the exposed individual. Animal studies suggest that CME may also influence the health and behaviour in the next generation offspring through CME-driven epigenetic changes in the germ line. Here we investigated the associated between early life stress on the epigenome of sperm in humans with history of CME.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!