Solid-Phase Enzymatic Remodeling Produces High Yields of Single Glycoform Antibodies.

Biotechnol J

Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.

Published: April 2018

Antibodies are synthesized in mammalian cell culture as heterogeneous mixtures of glycoforms. Production of single glycoforms remains a challenge despite their value as therapeutics. The authors report a method of sequential enzymatic-based changes to antibodies while immobilized on an affinity column. Various antibodies (monoclonal and polyclonal) are isolated on Protein A or G columns and their glycans modified by sequential addition of enzymes for a desired transformation. Galactosylated antibodies (>90% yield) are produced by a one stage reaction process with sialidase to remove any sialic acid residues and addition of galactose with galactosyltransferase and UDP-Gal. Sialylated antibodies (>90%) are produced by a 2 stage conversion involving α(2,3) sialidase and galactosyltransferase followed by treatment with α(2,6) sialyltransferase in the presence of CMP-NANA. By this method, >90% of a disialylated human-llama antibody (EG2-hFc) and equimolar quantities of monosialylated and disialylated forms of human antibodies (αIL8-hFc and human polyclonal) are produced. Such high levels of sialylation are very difficult to obtain by typical cell culture methods. This method of transformation while the antibody is held on a solid-phase column is superior to previous methods because it allows a series of enzymatic steps without the need for intermediate purification. This is an efficient and rapid method to generate therapeutic antibodies with predefined glycosylation profiles. This should also assist in investigating the structure-function relationship of antibody glycans to find the desired glycosylation profile for high functional activity. With further optimization the method can be used to modify antibodies in large-scale manufacturing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201700381DOI Listing

Publication Analysis

Top Keywords

antibodies
9
cell culture
8
antibodies >90%
8
produced stage
8
method
5
solid-phase enzymatic
4
enzymatic remodeling
4
remodeling produces
4
produces high
4
high yields
4

Similar Publications

Enhancing farmer awareness: Vertical transmission of Neospora caninum in aborting cattle and the value of diagnostics tools.

Vet Parasitol

January 2025

Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Bern 3012, Switzerland. Electronic address:

The protozoan parasite Neospora caninum is an important cause of abortion in cattle. Infection occurs horizontally by ingestion of oocysts shed by canids or vertically, from an infected dam to the foetus, and may result in abortion, stillbirth, or the birth of subclinically infected offspring. We estimated the occurrence of N.

View Article and Find Full Text PDF

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.

Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.

View Article and Find Full Text PDF

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!