Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete. Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809279 | PMC |
http://dx.doi.org/10.1158/2159-8290.CD-17-0321 | DOI Listing |
Physiol Plant
January 2025
KWS SEMILLAS IBÉRICA S.L.U, Finca Las Monjas, Miranda, Murcia, Spain.
Stomatal abundance sets plants' potential for gas exchange, impacting photosynthesis and transpiration and, thus, plant survival and growth. Stomata originate from cell lineages initiated by asymmetric divisions of protodermal cells, producing meristemoids that develop into guard cell pairs. The transcription factors SPEECHLESS, MUTE, and FAMA are essential for stomatal lineage development, sequentially driving cell division and differentiation events.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America.
Development of multicellular organisms requires well-orchestrated interplay between cell-intrinsic transcription factors and cell-cell signaling. One set of highly conserved transcription factors that plays diverse roles in development is the SoxC group. C.
View Article and Find Full Text PDFMicrobiol Res
January 2025
Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada; Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B 1R6, Canada. Electronic address:
The rise of antimicrobial resistance as a global health concern has led to a strong interest in compounds able to inhibit the growth of bacteria without detectable levels of resistance evolution. A number of these compounds have been reported in recent years, including the tridecaptins, a small family of lipopeptides typified by the synthetic analogue octyl-tridecaptin A. Hypothesizing that prior reports of negligible resistance evolution have been due in part to limitations in the laboratory evolution systems used, we have attempted to select for resistant mutants using a soft agar gradient evolution (SAGE) system developed by our lab.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Waxy maize is highly preferred diet in developing countries due to its high amylopectin content. Enriching amylopectin in biofortified maize meets food security and fulfils the demand of rising industrial applications, especially bioethanol. The mutant waxy1 (wx1) gene is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!