Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor with a median patient survival of less than two years, even with the optimal standard of care, namely, surgical resection followed by radiotherapy with adjuvant temozolomide chemotherapy. Long-term survival is extremely rare and there is a tremendous need for novel GBM therapies. Following our prior reports on the anticancer activity of osmium(VI) nitrido compounds and their effectiveness against cancer initiating cells, we investigated the efficacy of Os(VI) on GBM initiating cells in vitro and in vivo. Conventional MTT and 3D cytotoxicity assays revealed that patient-derived GBM models were sensitive to cisplatin, TMZ, and two Os(IV) derivatives. Rapid cell death occurred at low micromolar concentrations of the Os(IV) compounds. Cell cycle analysis, Os uptake studies, and cellular distribution experiments provided further insight into the anticancer properties of these compounds, indicating differential uptake for both compounds and a modest G/M arrest after treatment. Moreover, in vivo experiments showed a significant increase in survival after a single intracranial chemotherapeutic injection, results that warrant further studies using this approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2017.11.041 | DOI Listing |
Plant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.
View Article and Find Full Text PDFBackground: The World Health Organization (WHO) recommended cryptococcal antigen (CrAg) screening for people presenting with advanced HIV disease (AHD) and for those with positive CrAg without evidence of meningitis to initiate preemptive antifungal medication. Data on the implementation of WHO recommendations regarding CrAg screening is limited. We estimated pooled prevalence of CrAg screening uptake, cryptococcal antigenemia, lumbar puncture, cryptococcal meningitis and initiation of preemptive antifungal medication from available eligible published studies conducted in Africa.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Department of Dermatology, The Affiliated Hospital to Changchun University of Chinese Medicine, China.
Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.
Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.
Proc Natl Acad Sci U S A
January 2025
Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!