Although only a small proportion of cholesterol in the body is esterified, in several diseases marked expansion of the esterified cholesterol (EC) pool occurs. These include Wolman disease (WD) and Cholesteryl Ester Storage Disease (CESD) which both result from mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). The respective contributions that our three cholesterol esterifying enzymes make to EC production, especially in disorders like CESD, are not well defined. The current studies represent a detailed exploration of our earlier findings in young male LAL-deficient mice also missing sterol O-acyltransferase 2 (SOAT2, also called ACAT2). Here we show that, even as they aged, male and female Lal: Soat2 mice, compared to Lal: Soat2 littermates, had appreciably less hepatomegaly as well as a marked reduction in the level of sequestration of EC, in liver transaminase activities, and in hepatic mRNA expression levels for markers of inflammation. Loss of SOAT2 function also dramatically curtailed EC entrapment in the small intestine of the LAL-deficient mice. Together, these data imply that SOAT2 inhibition, if applied concurrently with enzyme replacement therapy for LAL deficiency, may blunt the re-esterification of newly released unesterified cholesterol thereby improving clinical outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760480PMC
http://dx.doi.org/10.1016/j.steroids.2017.11.015DOI Listing

Publication Analysis

Top Keywords

loss soat2
8
soat2 function
8
lysosomal acid
8
lal-deficient mice
8
lal soat2
8
soat2
6
impact loss
4
function disease
4
disease progression
4
progression lysosomal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!