Quantum control of coherent π-electron ring currents in polycyclic aromatic hydrocarbons.

J Chem Phys

Department of Applied Chemistry, Institute of Molecular Science and Center for Interdisciplinary Molecular Science, National Chiao-Tung University, Hsinchu 30010, Taiwan.

Published: December 2017

We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5004504DOI Listing

Publication Analysis

Top Keywords

ring current
28
ring
11
ring currents
8
currents polycyclic
8
polycyclic aromatic
8
aromatic hydrocarbons
8
benzene rings
8
perimeter ring
8
middle ring
8
electric fields
8

Similar Publications

Two new nonfused ring nonfullerene electron acceptors, NFAs, (dicarbazolyl)bis(2-(3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) () and -(2-(5,6-fluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) (), thus exhibiting an A-D-A motif, were synthesized and characterized. As thin films, they exhibit the lowest energy absorption signature near 540 nm, extending down to ∼700 nm. This band is due to an intramolecular charge transfer process from the (nonfused dicarbazoyl; ) moiety to the malononitrile-based units () based on density functional theory calculations (DFT), which are also corroborated by time-dependent DFT (TDDFT) computations.

View Article and Find Full Text PDF

Dupuytren's contracture is a chronic condition that affects the palmar fascia, leading to progressive flexion of the fingers, particularly the ring and little fingers. This article provides an in-depth review of the current understanding of the condition and its management. Commonly seen in older men of Northern European descent, Dupuytren's can significantly impair hand function as contractures develop.

View Article and Find Full Text PDF

Criegee intermediates (CIs) are potentially significant oxidants and a major source of OH radicals in the troposphere. The -CHCHOO intermediate has been confirmed as a crucial component of CIs in the atmospheric environment. Although previous studies have provided some experimental and theoretical rate constants, inconsistencies among these data remain, and the experimental data do not cover the full range of temperatures present in the troposphere.

View Article and Find Full Text PDF

Modulating π-bridge in donor-π-acceptor covalent organic frameworks for low-energy-light-driven photocatalytic reaction.

J Colloid Interface Sci

December 2024

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. Electronic address:

Most of the photocatalytic reactions are currently driven by high-energy light (UV, blue light), which inevitably leads to side reactions and co-catalyst deactivation. Therefore, there is an urgent need to prepare novel photocatalysts with low-energy photocatalytic properties. Herein, we report a rational molecular design of covalent organic frameworks (COFs) equipped with donor-π-acceptor systems with different π-bridges (aromatic ring, mono- and bis-alkynyl).

View Article and Find Full Text PDF

Light People: Prof. Henry Snaith's (FRS) perovskite optoelectronics journey.

Light Sci Appl

January 2025

Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.

In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!