Cell and gene therapies (CGTs) are examples of future therapeutics that can be used to cure or alleviate the symptoms of disease, by repairing damaged tissue or reprogramming defective genetic information. However, despite the recent advancements in clinical trial outcomes, the path to wide-scale adoption of CGTs remains challenging, such that the emergence of a "blockbuster" therapy has so far proved elusive. Manufacturing solutions for these therapies require the application of scalable and replicable cell manufacturing techniques, which differ markedly from the existing pharmaceutical incumbent. Attempts to adopt this pharmaceutical model for CGT manufacture have largely proved unsuccessful. The most significant challenges facing CGT manufacturing are process analytical testing and quality control. These procedures would greatly benefit from improved sensory technologies that allow direct measurement of critical quality attributes, such as pH, oxygen, lactate and glucose. In turn, this would make manufacturing more robust, replicable and standardized. In this review, the present-day state and prospects of CGT manufacturing are discussed. In particular, the authors highlight the role of fluorescent optical sensors, focusing on their strengths and weaknesses, for CGT manufacture. The review concludes by discussing how the integration of CGT manufacture and fluorescent optical sensors could augment future bioprocessing approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1116/1.5013335 | DOI Listing |
Mater Horiz
January 2025
Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, P. R. China.
Given that optical thermometers are widely used due to their unique advantages, this study aims to address critical challenges in existing technologies, such as insufficient sensitivity, limited temperature measurement ranges, and poor signal recognition capabilities. Herein, we develop a thermometer based on the fluorescence intensity ratio (FIR) of Sb-doped CsNaInCl (CsNaInCl:Sb). As the temperature increases from 203 to 323 K, the thermally induced transition from triplet to singlet self-trapped excitons (STEs) leads to enhanced 455 nm photoluminescence (PL) from singlet STE recombination.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China.
Ulcerative colitis (UC), often referred to as "green cancer", is a chronic inflammatory bowel disease with an unclear etiology, closely associated with the imbalance of hydrogen sulfide (HS) and peroxynitrite (ONOO). HS exhibits anti-inflammatory effects at physiological levels, but excessive concentrations can compromise the intestinal barrier, while ONOO aggravates inflammation. To facilitate the molecular-level monitoring of these compounds in UC, we developed a novel fluorescent probe, , capable of simultaneously detecting HS and ONOO via distinct fluorescent channels in a cascade mode.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. Electronic address:
The development of advanced optical probes for point-of-care testing holds great importance in the field of diagnostic technologies. This study focused on the synthesis of a probe featuring both fluorescent and photothermal responses with single excitation wavelength, which was achieved through the combination of oxidized camellia oleifera shell powder (OC) and Prussian blue nanoparticles (PBNPs). Notably, OC derived from the direct processing of raw material showed fluorescent and phosphorescent emissions simultaneously, and the positions of the two peaks overlapped with the absorbance range of PBNPs, making the fluorescent and phosphorescent emissions of OC effectively quenched by PBNPs.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
As the third largest class of dyes in the world, triphenylmethane dyes are widely applied in colorimetric sensing. However, triphenylmethane dyes are commonly nonfluorescent, which limits their sensing applications. It is worthwhile to study the fluorescence off/on control of triphenylmethane dyes and promote the applications of triphenylmethane dyes in sensing technology.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!