A low dose of formononetin accelerates the proliferation of nasopharyngeal carcinoma cells ; however, the underlying mechanism remains unknown. Here, we investigated the molecular mechanism of formononetin in CNE2 cell proliferation. CNE2 cells were treated with 0 to 1 μM formononetin. To inhibit mitogen activated protein kinase / extracellular regulate kinase (MAPK/ERK) kinase (MEK) and microRNA (miR)-375, cells were pretreated with either PD98059 or a miR-375 inhibitor, respectively, followed by co-treatment with formononetin (0.3 μM) plus an inhibitor. Female rats were ovariectomized (OVX), and some OVX rats received formononetin or estrogen (E) injections. Sham operated animals were used as controls. Compared to control, 0.3 μM formononetin accelerated proliferation and decreased late apoptosis of CNE2 cells. However, formononetin-induced pro-growth and anti-apoptosis activity was abolished by PD98059 and the miR-375 inhibitor. In addition, 0.1 and 0.3 μM formononetin significantly increased estrogen receptor-α (ERα) and bcl-2, but decreased protein-phosphatase and tensin homologue (PTEN) protein expression, all of which was reversed by the miR-375 inhibitor. Additionally, formononetin treatment resulted in a transient upregulation of phosphorylated (p)-ERK1/2. studies indicated that formononetin significantly increased endometrium thickness and down-regulated ERα expression in OVX rats. Taken together, our study demonstrates that a low concentration of formononetin can promote growth of CNE2 cells and uterine tissues, possibly through regulating the ERα-miR-375-PTEN-ERK1/2-bcl-2 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725001 | PMC |
http://dx.doi.org/10.18632/oncotarget.21923 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!