One of the trends in design of mid-wave infrared (MWIR) focal plane arrays (FPAs) consists in reduction of the pixel sizes which allows increasing the resolution and decreasing the dark currents of FPAs. To keep high light collection efficiency and to combine it with large angle-of-view (AOV) of FPAs, in this work we propose to use photonic jets produced by the dielectric microspheres for focusing and highly efficient coupling light into individual photodetector mesas. In this approach, each pixel of FPA is integrated with the appropriately designed, fixed and properly aligned microsphere. The tasks consist in developing technology of integration of microspheres with pixels on a massive scale and in developing designs of corresponding structures. We propose to use air suction through a microhole array for assembling ordered arrays of microspheres. We demonstrate that this technology allows obtaining large-scale arrays containing thousands of microspheres with ~1% defect rate which represents a clear advantage over the best results obtained by the techniques of directed self-assembly. We optimized the designs of such FPAs integrated with microspheres for achieving maximal angle of view (AOV) as a function of the index of refraction and diameter of the microspheres. Using simplified two-dimensional finite difference time domain (FDTD) modeling we designed structures where the microspheres are partly-immersed in a layer of photoresist or slightly truncated by using controllable temperature melting effects. Compared to the standard microlens arrays, our designs provide up to an order of magnitude higher AOVs reaching ~8° for back-illuminated and ~20° for front-illuminated structures.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.031174DOI Listing

Publication Analysis

Top Keywords

photonic jets
8
highly efficient
8
focal plane
8
plane arrays
8
large angle-of-view
8
microspheres
7
arrays
5
jets highly
4
efficient mid-ir
4
mid-ir focal
4

Similar Publications

The Heisenberg-RIXS instrument at the European XFEL.

J Synchrotron Radiat

January 2025

Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.

Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.

View Article and Find Full Text PDF

In the field of cattle medicine in Austria, to date, few studies have investigated the presence of methicillin-resistant and extended-spectrum β-lactamase-producing in Austria. For this reason, milk and nasal samples were examined for the presence of methicillin-resistant as well as fecal samples for extended-spectrum cephalosporin-resistant . The nasal and fecal swabs were collected during the veterinary treatment of calf pneumonia and calf diarrhea.

View Article and Find Full Text PDF
Article Synopsis
  • This letter proposes a new method for identifying confining dark sectors at the LHC through the detection of semi-visible jets resulting from collisions involving dark quarks from a hidden sector.
  • It explains how these semi-visible jets can produce non-isolated photons and stable/unstable dark bound states, which may not align with current search strategies at the LHC.
  • The authors suggest using a deep neural network to differentiate these exotic jets from background noise by analyzing their unique substructure, allowing for potential discoveries of heavy bosons with masses up to 5 TeV using data from the LHC's Run 2.
View Article and Find Full Text PDF

Slippery lubricant infused porous surfaces (SLIPS) have the potential to address daunting challenges such as undesirable surface fouling/biofouling, icing, etc. However, the depletion of lubricants hampers their practical utility. As a solution, here a rational strategy is introduced that operates synergistically in three parts.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the UV-induced photo-relaxation dynamics of 5-bromouracil (BrU) and 5-bromo-2'-deoxyuridine (BrUrd) using advanced femtosecond time-resolved photoelectron spectroscopy.
  • Upon UV excitation, both molecules quickly relax to lower electronic states before returning to the ground state, with an intermediate πσ* state identified in the process.
  • Unlike thymine, the study observes that neither the nπ* state nor a long-lived triplet state forms, with solvent effects limiting the dissociation yield in the solutions tested.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!