AI Article Synopsis

  • Climate change impact assessments often face uncertainties from various sources, including climate projections and inadequacies in model parameters.
  • A new study developed a triple-ensemble probabilistic assessment using seven crop models, multiple parameters, and eight climate projections to evaluate the impact on barley growth and yield in Finland and Spain for the 2050s.
  • The results showed varied effects on yield, with a median change of -4% in Finland and +16% in Spain, highlighting that crop model structure contributed most to the uncertainty in outcomes, offering insights for model users on where to focus their efforts.

Article Abstract

Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.14019DOI Listing

Publication Analysis

Top Keywords

climate projections
28
crop model
24
model parameters
20
contribution crop
16
climate change
16
change impact
16
model structure
12
impact assessments
12
triple-ensemble probabilistic
12
total variance
12

Similar Publications

Tropical Indian Ocean drives Hadley circulation change in a warming climate.

Natl Sci Rev

January 2025

Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China.

The weakening and poleward expansion of the Hadley circulation (HC) are considered robust responses of atmospheric meridional circulation to anthropogenic warming. Climate impacts arising from these changes enhance drought conditions and reduce food production in the affected regions. Therefore, understanding the mechanisms of HC changes is critical to anticipating the resultant climate risks.

View Article and Find Full Text PDF

Introduction: As climate change advances, the looming threat of dengue fever, intricately tied to rising temperatures, intensifies, posing a substantial and enduring public health challenge in the Philippines. This study aims to investigate the historical and projected excess dengue disease burden attributable to temperature to help inform climate change policies, and guide resource allocation for strategic climate change and dengue disease interventions.

Methods: The study utilized established temperature-dengue risk functions to estimate the historical dengue burden attributable to increased temperatures.

View Article and Find Full Text PDF

The impacts of climate change on human health are often underestimated or perceived to be in a distant future. Here, we present the projected impacts of climate change in the context of COVID-19, a recent human health catastrophe. We compared projected heat mortality with COVID-19 deaths in 38 cities worldwide and found that in half of these cities, heat-related deaths could exceed annual COVID-19 deaths in less than ten years (at + 3.

View Article and Find Full Text PDF

Understanding the evolutionary processes underlying range-wide genomic variation is critical to designing effective conservation and restoration strategies. Evaluating the influence of connectivity, demographic change and environmental adaptation for threatened species can be invaluable to proactive conservation of evolutionary potential. In this study, we assessed genomic variation across the range of Fraxinus latifolia, a foundational riparian tree native to western North America recently exposed to the invasive emerald ash borer (Agrilus planipennis; EAB).

View Article and Find Full Text PDF

Dietary modification has the potential to improve nutritional status and reduce environmental impacts of the food system. However, for many countries, the optimal composition of locally contextualized healthy and sustainable diets is unknown. The Gambia is vulnerable to climate-change-induced future water scarcity which may affect crop yields and the ability to supply healthy diets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!