A train of BURBOP universal rotation pulses has been used to generate a spin lock sufficient to observe TOCSY correlations over a 46 kHz F spectral window (i.e. 122 ppm on a 9.4 T spectrometer). This spin lock requires lower RF field (γB = 15 kHz), and was employed over a wider spectral window, than previously reported DIPSI-2 spin locks. The BURBOP-based spin lock was effected for 80-160 ms periods with a 2% duty cycle without evidence of harm to the RF coil of the probehead. Spectral separation and full set of correlations were obtained for a mixture of perfluorocarbons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2017.12.002 | DOI Listing |
J Am Chem Soc
January 2025
Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
Magn Reson Med
December 2024
Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
Purpose: To implement and evaluate the feasibility of brain spin-lattice relaxation in the rotating frame (T1ρ) mapping using a novel optimized pulse sequence that incorporates weighted spin-lock acquisitions, enabling high-resolution three-dimensional (3D) mapping.
Methods: The optimized variable flip-angle framework, previously proposed for knee T1ρ mapping, was enhanced by integrating weighted spin-lock acquisitions. This strategic combination significantly boosts signal-to-noise ratio (SNR) while reducing data acquisition time, facilitating high-resolution 3D-T1ρ mapping of the brain.
J Magn Reson
January 2025
Non-Human-Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States. Electronic address:
Chemical exchange saturation transfer (CEST) MRI has become increasingly utilized for detecting dilute labile protons and characterizing microenvironment properties. However, the CEST MRI effect is only a few percent, and there is a need for a systematic approach to optimize scan parameters for sensitive and accurate CEST quantification. We propose multi-dimensional adjustments of key parameters such as the repetition time (TR) and RF duty cycle to optimize CEST MRI sensitivity per unit of time and utilization of quasi-steady-state (QUASS) reconstruction to recover the full CEST effect during postprocessing.
View Article and Find Full Text PDFNMR Biomed
January 2025
Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong.
Quantitative magnetization transfer (MT) imaging enables noninvasive characterization of the macromolecular environment of tissues. However, recent work has highlighted that the quantification of MT parameters using saturation radiofrequency (RF) pulses exhibits orientation dependence in ordered tissue structures, potentially confounding its clinical applications. Notably, in tissues with ordered structures, such as articular cartilage and myelin, the residual dipolar coupling (RDC) effect can arise owing to incomplete averaging of dipolar-dipolar interactions of water protons.
View Article and Find Full Text PDFArXiv
October 2024
F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, US.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!