NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings.

Stem Cell Res

Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14263, USA. Electronic address:

Published: January 2018

Adult skeletal muscle regeneration relies on the activity of satellite cells residing in the skeletal muscle niche. However, systemic and intrinsic factors decrease the myogenic differentiation potential of satellite cells thereby impairing muscle regeneration. Here we present data showing that late passage C2C12 myoblasts exhibited significantly impaired myogenic differentiation potential that was accompanied by impaired expression of myogenic regulatory factors (Myf5, MyoD, Myogenin, and MRF4) and members of myocyte enhancer factor 2 family. Notably, ectopic expression of NANOG preserved the morphology and restored the myogenic differentiation capacity of late passage myoblasts, possibly by restoring the expression level of these myogenic factors. Muscle regeneration was effective in 2D cultures and in 3D skeletal microtissues mimicking the skeletal muscle niche. The presence of NANOG was required for at least 15days to reverse the impaired differentiation potential of myoblasts. However, it was critical to remove NANOG during the process of maturation, as it inhibited myotube formation. Finally, myoblasts that were primed by NANOG maintained their differentiation capacity for 20days after NANOG withdrawal, suggesting potential epigenetic changes. In conclusion, these results shed light on the potential of NANOG to restore the myogenic differentiation potential of myoblasts, which is impaired after multiple rounds of cellular division, and to reverse the loss of muscle regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2017.11.018DOI Listing

Publication Analysis

Top Keywords

myogenic differentiation
20
differentiation potential
20
muscle regeneration
16
skeletal muscle
12
impaired myogenic
8
satellite cells
8
muscle niche
8
late passage
8
differentiation capacity
8
potential myoblasts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!