Vitamin D, a secosteroid predominately obtained by endogenous production, has in recent years been linked to obesity and its comorbidities. The purpose of this review is to draw conclusions from animal and human studies on the effects of vitamin D on adipogenesis to identify the molecular links between vitamin D and obesity. The information presented herein was obtained from 4 databases (PubMed, CINAHL, Cochrane Library, Scopus) using predefined search terms, as well as research literature and other reviews. The effects of vitamin D on adipogenesis have been researched in several animal models, and the majority of these studies suggest vitamin D plays an inhibitory role in adipogenesis. Studies into vitamin D status and obesity in humans are limited, with the majority being observational epidemiological studies that provide no conclusions on cause and effect or clear links on the molecular mechanisms. The few cell culture and supplementation studies that have investigated adipogenesis in human cells indicate that, in contrast to findings from rodent studies, vitamin D is proadipogenic. There is insufficient evidence to determine whether 1) vitamin D deficiency is associated with a lean or obese phenotype, 2) vitamin D deficiency is a consequence of obesity, or (3) the effects of vitamin D on fat tissue are due to interactions with calcium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/nutrit/nux056 | DOI Listing |
Curr Nutr Rep
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey.
Endocrine disruptors (EDs) can mimic or interfere with hormones in the body, leading to non-communicable diseases, such as obesity, diabetes, and metabolic syndrome. Susceptibility to EDs increases during prenatal and postnatal life, a critical time window. This review aims to summarize the latest evidence on the relation of early life exposure to some EDs with obesity and the other metabolic disorders.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
Purpose Of Review: Berries are a great source of fiber, polyunsaturated fatty acids, and beneficial secondary metabolites (polyphenols). Various phytochemicals present in berries (glycosidic-linked flavonoids, anthocyanins, etc.) provide potential health benefits to consumers.
View Article and Find Full Text PDFBiol Direct
December 2024
School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Peroxisome proliferator-activated receptor-γ (PPARγ) is a critical regulator of adipogenesis and bone metabolism, playing complex roles in osteoporosis. This study investigates the effects of taurine and homocysteine on PPARγ, focusing on their roles in osteoclastogenesis and bone health. In-silico analyses, including molecular docking and molecular dynamic simulations, revealed that both taurine and homocysteine bind competitively to the PPARγ ligand-binding domain, exhibiting distinctive antagonistic modes, including destabilization of PPARγ's key helices H3, H4/5, H11, and H12.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
Intramuscular fat (IMF) content plays a crucial role in determining pork quality. Recent studies have highlighted transcriptional mechanisms controlling adipogenesis in porcine IMF. However, the changes in chromatin accessibility during adipogenic differentiation are still not well understood.
View Article and Find Full Text PDFAnim Nutr
December 2024
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
This study investigated whether vitamin A (VA) administration during the neonatal stage could increase the number of intramuscular adipocytes in Hu sheep by promoting vascularity. A total of 56 newborn male Hu sheep were divided into four groups and received intramuscular injections of either 0, 7500 IU retinoic acid (RA), 7500 IU VA, or a combination of 7500 IU VA and 5 mg SU5416 (an angiogenic inhibitor), at 1, 7, 14, and 21 days of age. At 15 days of age, 6 sheep from each group were randomly selected and sacrificed for intramuscular adipogenic capacity analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!