A Self-Repairing Cathode Material for Lithium-Selenium Batteries: Se-C Chemically Bonded Selenium-Graphene Composite.

Chemistry

College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P.R. China.

Published: February 2018

Lithium-selenium batteries, employing selenium as a cathode material, exhibit some notable advantages, such as high discharge rates and good cycling performance, due to their high electrical conductivity, high output voltages, and high volumetric capacity density. However, an important problem, termed the "shuttle effect", can lead to capacity decay in Li-Se cells (and in Li-S cells), which arises from aggregation and the loss of Se or S from the cathode into the electrolyte. In this work, in order to solve this problem, a new self-repairing system has been devised, in which some Se atoms are chemically bonded to the carbon atoms of graphene and act as reclaiming points for dissociated Se atoms through the establishment of -Se-Se-Se- chains. Se-decorated graphene (Se-GE) was first constructed through a facile high-energy ball-milling process. Its formation was confirmed by XRD, SEM, HRTEM, XPS, and Raman analyses. As we anticipated, in examining cell properties, the as-prepared Se-GE composite underwent an initial capacity decay in the first 20 cycles (from 1050 mAh g to 750 mAh g , ca. 29 % loss), but the capacity then reverted to 970 mAh g (ca. 92 % of the initial value). Other measurements were also consistent with the recapture of dissociated Se atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201704079DOI Listing

Publication Analysis

Top Keywords

cathode material
8
lithium-selenium batteries
8
chemically bonded
8
capacity decay
8
dissociated atoms
8
self-repairing cathode
4
material lithium-selenium
4
batteries se-c
4
se-c chemically
4
bonded selenium-graphene
4

Similar Publications

Protective Coating of Single-Crystalline Ni-Rich Cathode Enables Fast Charging in All-Solid-State Batteries.

ACS Nano

January 2025

Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.

Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.

View Article and Find Full Text PDF

Strategies and Prospects for Engineering a Stable Zn Metal Battery: Cathode, Anode, and Electrolyte Perspectives.

Acc Chem Res

January 2025

Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.

ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD to NADH, facilitated by CbFDH in the presence of formate.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!