A novel personalized 3D injectable protein scaffold for regenerative medicine.

J Mater Sci Mater Med

Foundation Eduardo Anitua, Vitoria, Spain.

Published: December 2017

Biomaterials should be designed to closely resemble the characteristics and functions of the native extracellular matrix to provide mechanical support and signals to direct biological events. Here we have developed a novel injectable plasma rich in growth factors (PRGF-Endoret)-based formulation that combines a thermal-denaturation step of plasma with an autologous fibrin crosslinking. Rheological and mechanical properties were evaluated. Additionally, the microstructure and biological capacity of the biomaterial was also characterized. This novel formulation exhibited ideal mechanical properties and a gel-like behavior with the ability to progressively release its growth factor load over time. The results also suggested that the novel injectable formulation is non-cytotoxic, biocompatible and suitable for cell ingrowth as it is deduced from the fibroblast proliferation within the scaffold. Finally, stimulation of both cell proliferation and matrix proteins synthesis demonstrated the regenerative potential of this autologous protein based injectable scaffold.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-017-6012-6DOI Listing

Publication Analysis

Top Keywords

novel injectable
8
mechanical properties
8
novel
4
novel personalized
4
injectable
4
personalized injectable
4
injectable protein
4
protein scaffold
4
scaffold regenerative
4
regenerative medicine
4

Similar Publications

Spectral adversarial attack on graph via node injection.

Neural Netw

January 2025

School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550025, China.

Graph Neural Networks (GNNs) have shown remarkable achievements and have been extensively applied in various downstream tasks, such as node classification and community detection. However, recent studies have demonstrated that GNNs are vulnerable to subtle adversarial perturbations on graphs, including node injection attacks, which negatively affect downstream tasks. Existing node injection attacks have mainly focused on the limited local nodes, neglecting the analysis of the whole graph which restricts the attack's ability.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is the most prevalent joint disorder globally, causing a substantial and increasing socioeconomic burden. Kojic acid (KA) presented potential biological roles in regulating inflammation and autophagy, which was implicated in OA progression. However, its role in chondrocytes and OA has not been reported.

View Article and Find Full Text PDF

Discovery of 4,5-dihydro-benzo[g]indazole-based hydroxamic acids as HDAC3/BRD4 dual inhibitors and anti-tumor agents.

Eur J Med Chem

December 2024

Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:

Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.

View Article and Find Full Text PDF

The precise mechanisms behind early embryonic arrest due to sperm-related factors and the most effective strategies are not yet fully understood. Here, we present two cases of male infertility linked to novel variants, associated with oligoasthenoteratozoospermia (OAT) and early embryonic arrest. To investigate the underlying mechanisms and promising therapeutic approaches, knock-in and knock-out mice were generated.

View Article and Find Full Text PDF

Although current treatments for Duchenne Muscular Dystrophy (DMD) have proven to be effective in delaying myopathy, there remains a strong need to identify novel targets to develop additional therapies. Mitochondrial dysfunction is an early pathological feature of DMD. A fine balance of mitochondrial dynamics (fission and fusion) is crucial to maintain mitochondrial function and skeletal muscle health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!