We investigated the seasonal dynamics of in-stream metabolism at the reach scale (∼ 150 m) of headwaters across contrasting geological sub-catchments: clay, Greensand, and Chalk of the upper River Avon (UK). Benthic metabolic activity was quantified by aquatic eddy co-variance while water column activity was assessed by bottle incubations. Seasonal dynamics across reaches were specific for the three types of geologies. During the spring, all reaches were net autotrophic, with rates of up to 290 mmol C m d in the clay reach. During the remaining seasons, the clay and Greensand reaches were net heterotrophic, with peak oxygen consumption of 206 mmol m d during the autumn, while the Chalk reach was net heterotrophic only in winter. Overall, the water column alone still contributed to ∼ 25% of the annual respiration and primary production in all reaches. Net ecosystem metabolism (NEM) across seasons and reaches followed a general linear relationship with increasing stream light availability. Sub-catchment specific NEM proved to be linearly related to the local hydrological connectivity, quantified as the ratio between base flow and stream discharge, and expressed on a timescale of 9 d on average. This timescale apparently represents the average period of hydrological imprint for carbon turnover within the reaches. Combining a general light response and sub-catchment specific base flow ratio provided a robust functional relationship for predicting NEM at the reach scale. The novel approach proposed in this study can help facilitate spatial and temporal upscaling of riverine metabolism that may be applicable to a broader spectrum of catchments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724700PMC
http://dx.doi.org/10.1002/lno.10619DOI Listing

Publication Analysis

Top Keywords

reaches net
12
seasonal dynamics
8
reach scale
8
clay greensand
8
water column
8
net heterotrophic
8
sub-catchment specific
8
base flow
8
reaches
6
reach-scale river
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!