Regulation of microRNAs (miRNA) has been extensively investigated in diseases; however, little is known about the roles of miRNAs in cleidocranial dysplasia (CCD). The aim of the present study was to investigate the potential involvement of miRNAs in CCD. In vitro site-directed mutagenesis was performed to construct three mutant Runx2 expression vectors, which were then transfected into LS8 cells and MC3T3-E1 cells, to determine the impact on amelogenesis and osteogenesis, respectively. miRCURY LNA miRNA microarray identify miR-185-5p as a miRNA target commonly induced by all three Runx2 mutants. Real-time quantitative PCR was applied to determine the expression of miR-185-5p and Dlx2 in samples. Dual-luciferase reporter assays were conducted to confirm Dlx2 as a legitimate target of miR-185-5p. The suppressive effect of miR-185-5p on amelogenesis and osteogenesis of miR-185-5p was evaluated by RT-PCR and western blot examination of Amelx, Enam, Klk4, and Mmp20 gene and protein expression, and by Alizarin Red stain. We found that mutant Runx2 suppressed amelogenesis and osteogenesis. miR-185-5p, induced by Runx2, suppressed amelogenesis and osteogenesis. Furthermore, we identified Dlx2 as direct target of miR-185-5p. Consistently, Dlx2 expression was inversely correlated with miR-185-5p levels. This study highlights the molecular etiology and significance of miR-185-5p in CCD, and suggests that targeting miR-185-5p may represent a new therapeutic strategy in prevention or intervention of CCD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870583PMC
http://dx.doi.org/10.1038/s41419-017-0078-4DOI Listing

Publication Analysis

Top Keywords

amelogenesis osteogenesis
20
mutant runx2
12
mir-185-5p
10
target mir-185-5p
8
osteogenesis mir-185-5p
8
runx2 suppressed
8
suppressed amelogenesis
8
amelogenesis
5
osteogenesis
5
runx2 regulates
4

Similar Publications

Pretreatments to bonding on enamel and dentin disorders: a systematic review.

Evid Based Dent

December 2024

Univ. Lille, CHU Lille, Odontologie, F-59000 Lille, France.

Introduction: This systematic review focuses on structural anomalies of enamel and dentin such as fluorosis (F), molar-incisor hypomineralization (MIH), amelogenesis imperfecta (AI), dentinogenesis imperfecta (DI), osteogenesis imperfecta (OI), and X-linked hypophosphatemia (XLH). These pathologies affect up to 31% of the population, posing challenges in the adhesion of direct restorations. The primary objective of this analysis is to examine the survival rate and/or bonding resistance of direct restorations on tissues affected by enamel and dentin disorders in humans.

View Article and Find Full Text PDF

Aim: Loss-of-function mutations in FAM20A result in amelogenesis imperfecta IG (AI1G) or enamel-renal syndrome, characterized by hypoplastic enamel, ectopic calcification, and gingival hyperplasia, with some cases reporting spontaneous tooth infection. Despite previous reports on the consequence of FAM20A reduction in gingival fibroblasts and transcriptome analyses of AI1G pulp tissues, suggesting its involvement in mineralization and infection, its role in deciduous dental pulp cells (DDP) remains unreported. The aim of this study was to evaluate the properties of DDP obtained from an AI1G patient, providing additional insights into the effects of FAM20A on the mineralization of DDP.

View Article and Find Full Text PDF

CCN proteins are matricellular proteins and are important modulators of development and function of adult organs. However, there is no literature reporting the localization of CCN proteins during postnatal tooth development and the formation of periodontium. Therefore, the aim of our study was to investigate the expression of CCN1, CCN3, CCN4, CCN5 and CCN6 in the developing postnatal teeth.

View Article and Find Full Text PDF

Fam83h mutation causes mandible underdevelopment via CK1α-mediated Wnt/β-catenin signaling in male C57/BL6J mice.

Bone

July 2023

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Geriatric Dentistry, School & Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Truncation mutations in FAM83H are the major cause of autosomal dominant hypocalcified amelogenesis imperfecta. Some studies also indicated that FAM83H could be involved in osteogenic differentiation; however, the function of FAM83H in bone formation was rarely explored. This study aimed to explore the effect of Fam83h mutation on skeletal development.

View Article and Find Full Text PDF

Clear Aligners in Patients with Amelogenesis and Dentinogenesis Imperfecta.

Int J Dent

December 2021

Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Dentinogenesis imperfecta (DI) and amelogenesis imperfecta (AI) are hereditary abnormalities of dental hard tissues. Dental abnormalities may also be accompanied by symptoms of disorders such as osteogenesis imperfecta. AI and DI have a significant burden on socializing, function, and comfort; therefore, frequent screening and accurate diagnosis is the cornerstone of managing such conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!