Inhalation of ozone (O), a gaseous air pollutant, causes lung injury, lung inflammation, and airway hyperresponsiveness. Macrophages, mast cells, and neutrophils contribute to one or more of these sequelae induced by O Furthermore, each of these aforementioned cells express chemokine (C-C motif) receptor-like 2 (Ccrl2), an atypical chemokine receptor that facilitates leukocyte chemotaxis. Given that Ccrl2 is expressed by cells essential to the development of O-induced lung pathology and that chemerin, a Ccrl2 ligand, is increased in bronchoalveolar lavage fluid (BALF) by O, we hypothesized that Ccrl2 contributes to the development of lung injury, lung inflammation, and airway hyperresponsiveness induced by O To that end, we measured indices of lung injury (BALF protein, BALF epithelial cells, and bronchiolar epithelial injury), lung inflammation (BALF cytokines and BALF leukocytes), and airway responsiveness to acetyl--methylcholine chloride (respiratory system resistance) in wild-type and mice genetically deficient in Ccrl2 (Ccrl2-deficient mice) 4 and/or 24 hours following cessation of acute exposure to either filtered room air (air) or O In air-exposed mice, BALF chemerin was greater in Ccrl2-deficient as compared to wild-type mice. O increased BALF chemerin in mice of both genotypes, yet following O exposure, BALF chemerin was greater in Ccrl2-deficient as compared to wild-type mice. O increased indices of lung injury, lung inflammation, and airway responsiveness. Nevertheless, no indices were different between genotypes following O exposure. In conclusion, we demonstrate that Ccrl2 modulates chemerin levels in the epithelial lining fluid of the lungs but does not contribute to the development of O-induced lung pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742705 | PMC |
http://dx.doi.org/10.14814/phy2.13545 | DOI Listing |
Tissue Cell
January 2025
Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:
High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.
View Article and Find Full Text PDFJ Bras Pneumol
January 2025
. Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói (RJ) Brasil.
Objective: Silicosis is a pneumoconiosis characterized by fibrosis of the lung parenchyma caused by the inhalation of silica particles. Silica dust inhalation is associated with inflammation and induction of oxidative stress in the lungs. This oxidative stress affects telomeres, which are short tandem DNA repeats that cap the end of linear chromosomes.
View Article and Find Full Text PDFJ Bras Pneumol
January 2025
. Instituto D'Or de Pesquisa e Ensino - IDOR - Hospital Cárdio-Pulmonar, Rede D'Or, Salvador (BA) Brasil.
Objective: A significant number of patients with chronic thromboembolic pulmonary hypertension (CTEPH) are not eligible for pulmonary endarterectomy and may be treated with balloon pulmonary angioplasty (BPA). Although BPA programs have recently been developed in Brazil, no results have yet been published. The objective of this study was to assess the clinical and hemodynamic progression of the first patients treated with BPA at our center.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
November 2024
From the Department of Surgery and Sepsis and Critical Illness Research Center (J.A.M., L.S.K., E.E.P., C.G.A., K.B.K., L.E.B., P.A.E., A.M.M.), University of Florida College of Medicine, Gainesville; and The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences (G.P., R.N.), Florida State University College of Education, Health, and Human Sciences, Tallahassee, Florida.
Background: Traumatic injury leads to gut dysbiosis with changes in microbiome diversity and conversion toward a "pathobiome" signature characterized by a selective overabundance of pathogenic bacteria. The use of non-selective beta antagonism in trauma patients has been established as a useful adjunct to reduce systemic inflammation. We sought to investigate whether beta-adrenergic blockade following trauma would prevent the conversion of microbiome to a "pathobiome" phenotype.
View Article and Find Full Text PDFIntensive Care Med Exp
January 2025
Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!