Innate immune responses are the first defense against pathogenic invaders. Activation and termination of these immune responses are regulated by several mechanisms. MicroRNAs (miRNAs), a group of small non-coding RNAs, have been implicated in the regulation of a spectrum of both physiological and pathological conditions, including immune responses. Although the immune regulatory miRNA networks in higher vertebrates have been well described, regulation of these responses in fish species is poorly understood. In the present study, we investigated the role of the miRNA miR-203 involved in inflammatory responses in miiuy croaker (). We found that the Gram-negative bacterium and lipopolysaccharide significantly up-regulated host miR-203 expression. The increased miR-203 expression suppressed the production of inflammatory cytokines and thereby prevented mounting of a full immune response. Mechanistically, we identified and validated IL-1 receptor-associated kinase 4 () as a target of miR-203. We observed that miR-203 post-transcriptionally controls IRAK4 expression and thereby inhibits the activation of nuclear factor κB (NF-κB) signaling. In summary, our findings reveal that miR-203 in fish is a critical suppressor of innate immune responses to bacterial infection by suppressing a feedback to IRAK4-NF-κB-mediated signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787814 | PMC |
http://dx.doi.org/10.1074/jbc.RA117.000158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!