Alopecia areata (AA) is a common, inflammatory, nonscarring type of hair loss. Significant variations in the clinical presentation of AA have been observed, ranging from small, well-circumscribed patches of hair loss to a complete absence of body and scalp hair. Patients affected by AA encompass all age groups, sexes, and ethnicities, and may experience frustration with the unpredictable nature of their disease for which there is currently no definitive treatment. The cause of AA remains incompletely understood, though it is believed to result-at least in part-from a loss of immune privilege in the hair follicle, autoimmune-mediated hair follicle destruction, and the upregulation of inflammatory pathways. Patients with AA frequently experience marked impairment in psychological well-being, self-esteem, and may be more likely to suffer from psychiatric comorbidities. Part one of this two-part continuing medical education series describes the epidemiology, clinical evaluation, prognosis, and recent advancements in the understanding of the pathogenesis of AA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaad.2017.04.1141DOI Listing

Publication Analysis

Top Keywords

alopecia areata
8
clinical evaluation
8
hair loss
8
hair follicle
8
hair
5
areata disease
4
disease characteristics
4
characteristics clinical
4
evaluation perspectives
4
perspectives pathogenesis
4

Similar Publications

Background: Alopecia areata (AA) is a common non-scarring hair loss disorder associated with autoimmune conditions. However, the pathobiology of AA is not well understood, and there is no targeted therapy available for AA.  METHODS: In this study, differential gene expression analysis, immune status assessment, weighted correlation network analysis (WGCNA), and functional enrichment analysis were performed to identify shared genes associated with both immunological response and AA.

View Article and Find Full Text PDF

We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair.

View Article and Find Full Text PDF

Background: Alopecia areata (AA) is a chronic inflammatory disease that affects the hair follicles and sometimes the nails. It usually presents as a single or multiple patches of hair loss on the scalp, but any hair-bearing skin can be involved. AA treatment depends on the severity and extent of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!