Application of Classical Thermodynamics to Conductivity in Nonpolar Media: Experimental Confirmation.

J Phys Chem B

Environmental Fluid Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft, The Netherlands.

Published: January 2018

We previously proposed ( Gourdin-Bertin , S. and Chassagne , C. J. Chem. Phys. 2016 , 144 ( 24) ) a simple theoretical model to account for the evolution of conductivity with dielectric permittivity in nonpolar media. In this article, we validate the theory experimentally for the case of an ionogenic species kept at a constant chemical potential (i.e., in equilibrium with a nondissolved salt, in contrast to previously published conductivity measurements carried out as a function of various fully dissolved salt concentrations). To our knowledge, it is the first time that this type of experiment has been performed explicitly.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b09061DOI Listing

Publication Analysis

Top Keywords

nonpolar media
8
application classical
4
classical thermodynamics
4
thermodynamics conductivity
4
conductivity nonpolar
4
media experimental
4
experimental confirmation
4
confirmation proposed
4
proposed gourdin-bertin
4
gourdin-bertin chassagne
4

Similar Publications

Lidocaine (LID), frequently used in dermal applications, is a nonpolar local anesthetic agent that is practically insoluble in water. The main aim of this study is to develop the nanosuspension formulation of LID using the design of experiments (DoE). The improved solubility and dissolution rate provided by nanosizing are expected to result in enhanced dermal bioavailability.

View Article and Find Full Text PDF

RAFT Dispersion Polymerization of 2-Hydroxyethyl Methacrylate in Non-polar Media.

Macromolecules

December 2024

Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.

We report the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in -dodecane using a poly(lauryl methacrylate) (PLMA) precursor at 90 °C. This formulation is an example of polymerization-induced self-assembly (PISA), which leads to the formation of a colloidal dispersion of spherical PLMA-PHEMA nanoparticles at 10-20% w/w solids. PISA syntheses involving polar monomers in non-polar media have been previously reported but this particular system offers some unexpected and interesting challenges in terms of both synthesis and characterization.

View Article and Find Full Text PDF

Circular dichroism (CD) spectroscopy has emerged as a potent tool for probing chiral small-molecule ligand exchange on natively achiral quantum dots (QDs). In this study, we report a novel approach to identifying QD-biomolecule interactions by inducing chirality in CdS QDs using thermoresponsive elastin-like polypeptides (ELPs) engineered with C-terminal cysteine residues. Our method is based on a versatile two-step ligand exchange process starting from monodisperse oleate-capped QDs in nonpolar media and proceeding through an easily accessed achiral glycine-capped QD intermediate.

View Article and Find Full Text PDF

A possible origin of life in nonpolar environments.

Biosystems

December 2024

University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska ulica 8, 2000, Maribor, Slovenia. Electronic address:

Explaining the emergence of life is perhaps the central and most challenging question in modern science. We are proposing a new hypothesis concerning the origins of life. The new hypothesis is based on the assumption that during the emergence of life, evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity.

View Article and Find Full Text PDF

Dyeing of synthetic fiber-based wool blended fabrics in supercritical carbon dioxide.

Sci Rep

December 2024

Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, 12622, Giza, Egypt.

Development of supercritical carbon dioxide (SC-CO) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!