The primary challenge of developing clean energy conversion/storage systems is to exploit an efficient bifunctional electrocatalyst both for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with low cost and good durability. Here, we synthesized chlorine-doped Co(OH) in situ grown on carbon cloth (Cl-doped Co(OH)) as an integrated electrode by a facial electrodeposition method. The anodic potential was then applied to the Cl-doped Co(OH) in an alkaline solution to remove chlorine atoms (electro-oxidation (EO)/Cl-doped Co(OH)), which can further enhance the electrocatalytic activity without any thermal treatment. EO/Cl-doped Co(OH) exhibits a better performance both for ORR and OER in terms of activity and durability because of the formation of a defective structure with a larger electrochemically active surface area after the electrochemical oxidation. This approach provides a new idea for introducing defects and developing active electrocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b17002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!