AI Article Synopsis

  • Developing small molecular building blocks capable of emitting light in solid state is rare and challenging, but BF-containing dyes may offer a solution.
  • Two new series of N^NBF complexes were created using a microwave-assisted method, leading to improved aggregation-induced emission (AIE) properties.
  • The complexes displayed fluorescence in various states and showed potential for use in fluorescence imaging and materials science due to their stability and ability to form fluorescent nanoparticles.

Article Abstract

Developing a novel, small-sized molecular building block that may be capable of emitting light in the solid state is a challenging task and has rarely been reported in the literature. BF -containing dyes seem to be promising candidates towards this aim. Two series of new N^NBF complexes showing aggregation-induced emission (AIE) and aggregation-induced emission enhancement (AIEE) were designed and synthesized by means of a new protocol, which improved on the traditional method by employing microwave irradiation. The optical and photophysical properties of the BF complexes were investigated in depth. The synthesized complexes showed fluorescence in both solution and the solid state and, in a mixture of tetrahydrofuran/water, may aggregate into fluorescent nanoparticles. The experimental investigation was supported by quantum mechanical calculations. Their availability, stability, large Stokes shifts, and aggregation capabilities, along with their solid-state emission capability, render this new class of BF complexes promising AIEE/AIE fluorophores for further applications in the fields of fluorescence imaging and materials science.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201701526DOI Listing

Publication Analysis

Top Keywords

solid state
8
aggregation-induced emission
8
highlights road
4
road highly
4
highly emitting
4
emitting solid-state
4
solid-state luminophores
4
luminophores classes
4
classes thiazole-based
4
thiazole-based organoboron
4

Similar Publications

Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages.

Theranostics

January 2025

Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).

View Article and Find Full Text PDF

Introduction: Synthetic anabolic hormones, which may pose a potential risk to human health, should not be used in fattening food-producing animals. Because of the hormonal effects they cause, growth-promoting compounds are banned by legislation in the EU for use in animal husbandry. Consequently, all EU member states are required to conduct monitoring tests on the content and residues of these compounds in prescribed biological matrices to ensure the safety of food consumers.

View Article and Find Full Text PDF

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.

Chem Sci

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.

View Article and Find Full Text PDF

Sn-carbon nanocomposite anode for all-solid-state chloride-ion batteries operating at room temperature.

Chem Commun (Camb)

January 2025

Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.

All-solid-state chloride-ion batteries promise high theoretical energy density and room-temperature operation. However, conventional Sn anodes suffer from low material utilization attributed to large particle size and volume expansion. Here, nano-sized Sn particles in an N-doped carbon framework are used as an anode, resulting in ∼12% higher capacity compared to conventional Sn, due to improved Sn utilization and suppression of volume expansion.

View Article and Find Full Text PDF

Solid-state nanopores exhibit dynamically variable sizes influenced by buffer conditions and applied electric field. While dynamical pore behavior can complicate biomolecular sensing, it also offers opportunities for controlled, modification of pore size post-fabrication. In order to optimally harness solid-state pore dynamics for controlled growth, there is a need to systematically quantify pore growth dynamics and ideally develop quantitative models to describe pore growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!