Background: Medicines that exert oxidative pressure on red blood cells (RBC) can cause severe hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Due to X-chromosome inactivation, females heterozygous for G6PD with 1 allele encoding a G6PD-deficient protein and the other a normal protein produce 2 RBC populations each expressing exclusively 1 allele. The G6PD mosaic is not captured with routine G6PD tests.

Methods: An open-source software tool for G6PD cytofluorometric data interpretation is described. The tool interprets data in terms of % bright RBC, or cells with normal G6PD activity in specimens collected from 2 geographically and ethnically distinct populations, an African American cohort (USA) and a Karen and Burman ethnic cohort (Thailand) comprising 242 specimens including 89 heterozygous females.

Results: The tool allowed comparison of data across 2 laboratories and both populations. Hemizygous normal or deficient males and homozygous normal or deficient females cluster at narrow % bright cells with mean values of 96%, or 6% (males) and 97%, or 2% (females), respectively. Heterozygous females show a distribution of 10-85% bright cells and a mean of 50%. The distributions are associated with the severity of the G6PD mutation.

Conclusions: Consistent cytofluorometric G6PD analysis facilitates interlaboratory comparison of cellular G6PD profiles and contributes to understanding primaquine-associated hemolytic risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888147PMC
http://dx.doi.org/10.1111/ejh.13013DOI Listing

Publication Analysis

Top Keywords

g6pd
11
females heterozygous
8
normal deficient
8
bright cells
8
cytochemical flow
4
flow analysis
4
analysis intracellular
4
intracellular g6pd
4
g6pd aggregate
4
aggregate analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!