We propose and implement a broadband, compact, and low-cost wavefront sensing scheme by simply placing a thin diffuser in the close vicinity of a camera. The local wavefront gradient is determined from the local translation of the speckle pattern. The translation vector map is computed thanks to a fast diffeomorphic image registration algorithm and integrated to reconstruct the wavefront profile. The simple translation of speckle grains under local wavefront tip/tilt is ensured by the so-called "memory effect" of the diffuser. Quantitative wavefront measurements are experimentally demonstrated, both for the few first Zernike polynomials and for phase-imaging applications requiring high resolution. We finally provided a theoretical description of the resolution limit that is supported experimentally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.42.005117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!