We numerically investigate and design a compact electrically pumped edge-emitting photonic crystal waveguide (PCW) quantum dot (QD) laser operating at room temperature. Use of a narrowband folded directional coupler as the output mirror has made the proposed structure an edge-emitting single-mode laser. Moreover, we propose a set of rate equations to model the performance of the PCW-QD laser. In the proposed model, we take the effects of the homogeneous and inhomogeneous broadenings and the slow-light effects on the modal gain and loss coefficient into account. Simulations show that threshold current as low as ∼26  μA can be achieved for the PCW-QD laser with a 50-μm-long cavity and output power in the range of micro-watts. The proposed low-threshold edge-emitting PCW-QD laser is a promising light source for the off-chip and on-chip photonic network applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.009629DOI Listing

Publication Analysis

Top Keywords

pcw-qd laser
12
photonic crystal
8
crystal waveguide
8
laser
6
designing low-threshold
4
low-threshold quantum-dot
4
quantum-dot laser
4
laser based
4
based slow-light
4
slow-light photonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!