Mitigating the risk of Zika virus contamination of raw materials and cell lines in the manufacture of biologicals.

J Gen Virol

Merck KGaA, BioReliance® Services, Todd Campus, West of Scotland Science Park, Glasgow G20 OXA, UK.

Published: February 2018

Ensuring the virological safety of biologicals is challenging due to the risk of viral contamination of raw materials and cell banks, and exposure during in-process handling to known and/or emerging viral pathogens. Viruses may contaminate raw materials and biologicals intended for human or veterinary use and remain undetected until appropriate testing measures are employed. The outbreak and expansive spread of the mosquito-borne flavivirus Zika virus (ZIKV) poses challenges to screening human- and animal -derived products used in the manufacture of biologicals. Here, we report the results of an in vitro study where detector cell lines were challenged with African and Asian lineages of ZIKV. We demonstrate that this pathogen is robustly detectable by in vitro assay, thereby providing assurance of detection of ZIKV, and in turn underpinning the robustness of in vitro virology assays in safety testing of biologicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882083PMC
http://dx.doi.org/10.1099/jgv.0.000995DOI Listing

Publication Analysis

Top Keywords

raw materials
12
zika virus
8
contamination raw
8
materials cell
8
cell lines
8
manufacture biologicals
8
biologicals
5
mitigating risk
4
risk zika
4
virus contamination
4

Similar Publications

Objectives: To evaluate the image quality and lung nodule detectability of ultralow-dose CT (ULDCT) with adaptive statistical iterative reconstruction-V (ASiR-V) post-processed using a deep learning image reconstruction (DLIR)-based image domain compared to low-dose CT (LDCT) and ULDCT without DLIR.

Materials And Methods: A total of 210 patients undergoing lung cancer screening underwent LDCT (mean ± SD, 0.81 ± 0.

View Article and Find Full Text PDF

Molybdate, an oxidized form of molybdenum, facilitates molybdenum to be taken into cell, and thus to be included as a cofactor in the structure of enzymes necessary to ensure homeostasis. Although this compound provides the catalysis and electron transport of many biochemical reactions, it causes serious health problems in animals at high concentrations. For this reason, its recovery of water resources is one of the main subjects of scientific studies called bioremediaiton.

View Article and Find Full Text PDF

Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed.

View Article and Find Full Text PDF

Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Background: A wound must progress through serial steps of healing to achieve structural and functional stability. This process is hampered in chronic wounds and wounds with delayed healing. Wound cover through skin grafting or a flap, or spontaneous healing through epithelization, requires healthy granulation tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!