The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7dt03682e | DOI Listing |
Org Lett
December 2024
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.
Easily obtainable and efficient chiral -symmetric bipyridine-,'-dioxide ligands with Ni(OTf) were developed for application in catalyzing [3 + 2] cycloaddition reactions to synthesize optically active fused pyrazolidines or pyrazoline derivatives featuring three contiguous stereogenic centers by employing azomethine imines and α,β-unsaturated 2-acyl imidazoles, affording the corresponding adducts with the opposite configuration compared to previous synthetic products in 80-98% yields with 28-99% ee and >20:1 dr. In addition, subsequent amplification experiments and derivative transformations of the product further demonstrated the efficient catalytic performance of the catalyst Ni(II)-bipyridine-,'-dioxide complexes and the practicality of this synthesis methodology.
View Article and Find Full Text PDFIUCrdata
October 2024
Département de Chimie, Université de Montréal, Complexe des sciences, 1375, Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
The title compound, CHBrNO, crystallizes with two similar mol-ecules in the asymmetric unit. The extended structure features dimers linked by pairs of N-H⋯O and C-H⋯O hydrogen bonds. The HNCNO moiety of the title compound shows delocalization over the N-C-N part, as evidenced by the similar C-N bond distances.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.
Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (CHN){Zn(CHNO)Cl] (), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (CHN)[Zn(CHNO)Cl] (), were synthesized and their structures were determined using ESI-MS spectrometry, H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol () and ,'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine () were deprotonated by tri-ethyl-amine, forming the counter-ion EtNH, which inter-acts an N-H⋯O hydrogen bond with the ligand. The Zn atoms have a distorted trigonal-pyramidal () and distorted tetra-hedral () geometries with a coord-ination number of four, coordinating with the ligands N and O atoms.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan.
The title compound, [Zn(CHClNO)Cl], is a dinuclear zinc(II) complex with three chlorido ligands and one penta-dentate ligand containing quinolin-8-olato and bis-(pyridin-2-ylmeth-yl)amine groups. One of the two Zn atom adopts a tetra-hedral geometry and coordinates two chlorido ligands with chelate coord-ination of the N and O atoms of the quinolin-8-olato group in the ligand. The other Zn atom adopts a distorted trigonal-bipyramidal geometry, and coordinates one chlorido-O atom of the quinolin-8-olato group and three N atoms of the bis-(pyridin-2-ylmeth-yl)amine unit.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
October 2024
Department of Chemistry and Biochemistry Lamar University, 4400 MLK Blvd Beaumont Texas 77710 USA.
The mercury(II) halide complex [1,3-di--butyl-2,4-bis-(-butyl-amino)-1,3,2λ,4λ-di-aza-diphosphetidine-2,4-diselone-κ ,']di-iodido-mercury(II),-di-methyl-formamide monosolvate, [HgI(CHNPSe)]·CHNO or ()HgI, , containing -[( BuNH)(Se)P(μ-N Bu)P(Se)(NH Bu)] () was synthesized and structurally characterized. The crystal structure of confirms the chelation of chalcogen donors to HgI with a natural bite angle of 112.95 (2)°.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!