In this work, we confirmed that the copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction is an effective method for the organic-functionalization of polyoxometalates (POMs). Herein, for the first time, four novel 1,2,3-triazole functionalized polyoxovanadate (POV) organic-inorganic hybrids, (BuN)[VO{(OCH)CHNO}]·1.5CHCN 2, (BuN)[VO{(OCH)CHNO}]·2CHCN 3, (BuN)[VO{(OCH)CHN}] 4 and (BuN)[VO{(OCH)CHNCl}] 5 were prepared through the CuAAC reaction using the azide functionalized hexavanadate, (BuN)[VO{(OCH)CCHN}]·2.5CHCN 1, as the precursor, where CuI was used as the catalyst and N,N-diisopropylethylamine (DIPEA) as a stabilizer for Cu. All the four compounds were structurally and compositionally characterized by single-crystal X-ray diffraction, elemental analyses, powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), H NMR, ESI-MS, UV-Vis and thermogravimetric analysis (TGA).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt03822dDOI Listing

Publication Analysis

Top Keywords

azide-alkyne cycloaddition
8
cuaac reaction
8
x-ray diffraction
8
diversified polyoxovanadate
4
polyoxovanadate derivatives
4
derivatives copperi-catalysed
4
copperi-catalysed azide-alkyne
4
cycloaddition reaction
4
reaction synthesis
4
synthesis structural
4

Similar Publications

In this study, we applied a systematic approach to establish an iterative workflow and to drive the chemical design of thermosensitive, in situ forming injectables as a function of the intended target product profile. Self-assembly, mechanical properties, physical state, and thermal transition behavior were assessed via nuclear magnetic resonance, oscillatory rheology, turbidimetry and visual inspection techniques. Thus, poly(N-isopropylacrylamide) (PNIPAM) and poly(2-alkyl-2-oxazoline)s (PAOx)s with LCSTs below body temperature were studied before and after grafting them onto azido-substituted hyaluronic acid (HA) via strain-promoted azide-alkyne cycloaddition (SPAAC).

View Article and Find Full Text PDF

This computational study investigated the catalytic efficiency of novel RhCp complexes (X = CF, SiF, CCl, SOH) in [3 + 2] azide-alkyne cycloaddition reactions density functional theory (MN12-L/Def2-SVP). Through quantum mechanical approaches, we explore the impact of different substituents on the Cp* ligand on the mechanism, selectivity, and reactivity of these Rh-based catalysts. Non-covalent interaction (NCI) and reduced density gradient (RDG) analyses, along with frontier molecular orbital (FMO) and Hirshfeld atomic charge analyses, were utilized to assess ligand stability and catalytic performance.

View Article and Find Full Text PDF

Drug targeting strategies, such as peptide-drug conjugates (PDCs), have arisen to combat the issue of off-target toxicity that is commonly associated with chemotherapeutic small molecule drugs. Here we investigated the ability of PDCs comprising a human protein-derived cell-penetrating peptide-platelet factor 4-derived internalization peptide (PDIP)-as a targeting strategy to improve the selectivity of camptothecin (CPT), a topoisomerase I inhibitor that suffers from off-target toxicity. The intranuclear target of CPT allowed exploration of PDC design features required for optimal potency.

View Article and Find Full Text PDF

A review of click chemistry in the synthesis of organophosphorus triazoles and their biological activities.

Eur J Med Chem

January 2025

Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar. Electronic address:

Organophosphorus compounds, characterized by the incorporation of phosphorus into organic molecules, play a critical role in various fields such as medicine, agriculture, and industry. Their unique electronic properties and versatility make them essential in developing therapeutic agents, pesticides, and materials. One prominent class of organophosphorus compounds is organophosphorus heterocycles, which combine the benefits of both phosphorus and cyclic structures.

View Article and Find Full Text PDF

Strain-promoted azide-alkyne cycloaddition enhanced by secondary interactions.

Org Biomol Chem

January 2025

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

Azide-alkyne cycloaddition of cyclooct-2-yn-1-ol and 2-(azidophenyl)boronic acid proceeded rapidly at room temperature with complete regioselectivity to afford a triazole having a boronate ester group. The secondary interaction to form a boronate ion contributed to cycloaddition rate acceleration and the control of regioselectivity. The interaction to form an imine or hemiaminal was also evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!